Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes

Cited 46 time in webofscience Cited 44 time in scopus
  • Hit : 245
  • Download : 0
Efficient and power-scalable laser operation of a vibronic Tm3+ : KLu(WO4)(2) microchip laser at similar to 2.13 mu m is demonstrated. In the continuous-wave mode under diode pumping at similar to 805 nm, this laser generated 1.17 W at 2109-2133 nm with a slope efficiency of 39%. This emission is related to the coupling of the electronic transitions of Tm3+ ions with the stretching vibrations of the WOW oxygen bonds in the monoclinic KLu(WO4)(2) crystal host appearing at similar to 379, 406, and 450 cm(-1). The achieved emission wavelength is longer, to our knowledge, than any previously reported laser based on Tm3+ or Ho3+ doped double tungstate crystals. Passive Q-switching of the vibronic Tm3+ : KLu(WO4)(2) laser is realized with a single-walled carbon nanotube (SWCNT) based saturable absorber, representing the longest wavelength in this mode of operation. In this regime, the maximum output power reached 0.70 W at 2131 nm, corresponding to a slope efficiency of 29%. The pulse characteristics were 25 ns/1.1 mu J at the pulse repetition frequency of 0.62 MHz. These are, we believe, the shortest pulses ever achieved in any lanthanide-based laser passively Q-switched by carbon nanostructures. A conventional (purely electronic transition) Tm3+ : KLu(WO4)(2) microchip laser at 1.92 mu m Q-switched by the same SWCNTs generated 40 ns/ 4.0 mu J pulses corresponding to a peak power of 0.1 kW, which is a record value for this type of laser oscillator, to our knowledge. (C) 2016 Optical Society of America
Publisher
OPTICAL SOC AMER
Issue Date
2016-11
Language
English
Article Type
Article
Citation

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, v.33, no.11, pp.D19 - D27

ISSN
0740-3224
DOI
10.1364/JOSAB.33.000D19
URI
http://hdl.handle.net/10203/272807
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 46 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0