Enhancing Bifunctional Catalytic Activity via a Nanostructured La(Sr)Fe(Co)O3-delta@Pd Matrix as an Efficient Electrocatalyst for Li-O-2 Batteries

Cited 7 time in webofscience Cited 5 time in scopus
  • Hit : 291
  • Download : 0
One of the important challenges with a bifunctional electrocatalyst is reducing the large overpotential involved in the slow kinetics of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) at the air electrode in a metal air redox battery. Here, we present a nanostructured LSCF@Pd matrix of nanostructured LSCF (Nano-LSCF) with palladium to enhance the bifunctional catalytic activity in Li-O-2 battery applications. Pd nanoparticles can be perfectly supported on the surface of the Nano-LSCF, and the ORR catalytic activity was properly improved. When Nano-LSCF@Pd was applied to a cathode catalyst in Li-O-2 batteries, the first discharge ability (16912 mA h g(-1)) was higher than that of Nano-LSCF (6707 mA h g(-1)) and the cycling property improved. These results demonstrate that the Pd-deposited nanostructured perovskite is a capable catalyst to enhance the ORR activity of LSCF as a promising bifunctional electrocatalyst.
Publisher
AMER CHEMICAL SOC
Issue Date
2019-12
Language
English
Article Type
Article
Citation

ACS APPLIED ENERGY MATERIALS, v.2, no.12, pp.8633 - 8640

ISSN
2574-0962
DOI
10.1021/acsaem.9b01540
URI
http://hdl.handle.net/10203/272614
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0