Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction

Cited 34 time in webofscience Cited 19 time in scopus
  • Hit : 296
  • Download : 185
DC FieldValueLanguage
dc.contributor.authorAnnavarapu, Rama Kishoreko
dc.contributor.authorKim, Sanhako
dc.contributor.authorWang, Minghuiko
dc.contributor.authorHart, A. Johnko
dc.contributor.authorSojoudi, Hosseinko
dc.date.accessioned2020-01-02T08:20:59Z-
dc.date.available2020-01-02T08:20:59Z-
dc.date.created2019-02-16-
dc.date.created2019-02-16-
dc.date.created2019-02-16-
dc.date.created2019-02-16-
dc.date.issued2019-01-
dc.identifier.citationSCIENTIFIC REPORTS, v.9, no.1-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/10203/270845-
dc.description.abstractUnderstanding wettability and mechanisms of wetting transition are important for design and engineering of superhydrophobic surfaces. There have been numerous studies on the design and fabrication of superhydrophobic and omniphobic surfaces and on the wetting transition mechanisms triggered by liquid evaporation. However, there is a lack of a universal method to examine wetting transition on rough surfaces. Here, we introduce force zones across the droplet base and use a local force balance model to explain wetting transition on engineered nanoporous microstructures, utilizing a critical force per unit length (FPL) value. For the first time, we provide a universal scale using the concept of the critical FPL value which enables comparison of various superhydrophobic surfaces in terms of preventing wetting transition during liquid evaporation. In addition, we establish the concept of contact line-fraction theoretically and experimentally by relating it to area-fraction, which clarifies various arguments about the validity of the Cassie-Baxter equation. We use the contact line-fraction model to explain the droplet contact angles, liquid evaporation modes, and depinning mechanism during liquid evaporation. Finally, we develop a model relating a droplet curvature to conventional beam deflection, providing a framework for engineering pressure stable superhydrophobic surfaces.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleExplaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction-
dc.typeArticle-
dc.identifier.wosid000456392400086-
dc.identifier.scopusid2-s2.0-85060387373-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue1-
dc.citation.publicationnameSCIENTIFIC REPORTS-
dc.identifier.doi10.1038/s41598-018-37093-6-
dc.contributor.localauthorKim, Sanha-
dc.contributor.nonIdAuthorAnnavarapu, Rama Kishore-
dc.contributor.nonIdAuthorWang, Minghui-
dc.contributor.nonIdAuthorHart, A. John-
dc.contributor.nonIdAuthorSojoudi, Hossein-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusWATER-DROPLET-
dc.subject.keywordPlusSUPERHYDROPHOBIC MATERIALS-
dc.subject.keywordPlusANGLE HYSTERESIS-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusCASSIE-
dc.subject.keywordPlusTENSION-
dc.subject.keywordPlusWETTABILITY-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusSTABILITY-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
108327.pdf(9.06 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 34 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0