Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis

Cited 71 time in webofscience Cited 74 time in scopus
  • Hit : 201
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorSuteewong, Teerapornko
dc.contributor.authorSai, Hiroakiko
dc.contributor.authorLee, Jinwooko
dc.contributor.authorBradbury, Michelleko
dc.contributor.authorHyeon, Taeghwanko
dc.contributor.authorGruner, Sol M.ko
dc.contributor.authorWiesner, Ulrichko
dc.date.accessioned2019-12-19T07:21:02Z-
dc.date.available2019-12-19T07:21:02Z-
dc.date.created2019-12-02-
dc.date.issued2010-09-
dc.identifier.citationJOURNAL OF MATERIALS CHEMISTRY, v.20, no.36, pp.7807 - 7814-
dc.identifier.issn0959-9428-
dc.identifier.urihttp://hdl.handle.net/10203/269954-
dc.description.abstractThis work reports on the structural evolution during room temperature synthesis of hexagonally ordered mesoporous silica nanoparticles with and without embedded iron oxide particles. Oleic acid-capped iron oxide nanoparticles are synthesized and transferred to an aqueous phase using the cationic surfactant, hexadecyltrimethylammonium bromide (CTAB). MCM-41 type silica and composite nanoparticles are fabricated via sol-gel synthesis. Aliquots are taken from the solution during synthesis to capture the particle formation process. Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS) reveal a transition from a disordered to an ordered structure in both synthesis systems. Along with the evolution of structure, iron oxide nanoparticles acting as seeds at the early stages are relocated from the particle centers to the edges. Nitrogen sorption measurements for iron oxide-embedded mesoporous nanoparticles indicate surface areas as high as for the mesoporous silica nanoparticles without iron oxide.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleOrdered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis-
dc.typeArticle-
dc.identifier.wosid000281411000030-
dc.identifier.scopusid2-s2.0-78149430622-
dc.type.rimsART-
dc.citation.volume20-
dc.citation.issue36-
dc.citation.beginningpage7807-
dc.citation.endingpage7814-
dc.citation.publicationnameJOURNAL OF MATERIALS CHEMISTRY-
dc.identifier.doi10.1039/c0jm01002b-
dc.contributor.localauthorLee, Jinwoo-
dc.contributor.nonIdAuthorSuteewong, Teeraporn-
dc.contributor.nonIdAuthorSai, Hiroaki-
dc.contributor.nonIdAuthorBradbury, Michelle-
dc.contributor.nonIdAuthorHyeon, Taeghwan-
dc.contributor.nonIdAuthorGruner, Sol M.-
dc.contributor.nonIdAuthorWiesner, Ulrich-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusDRUG-DELIVERY-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusSPHERES-
dc.subject.keywordPlusMCM-41-
dc.subject.keywordPlusSHELL-
dc.subject.keywordPlusCORE-
dc.subject.keywordPlusNANOCARRIERS-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusEFFICIENCY-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 71 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0