Overcoming Catastrophic Forgetting with Unlabeled Data in the Wild

Cited 74 time in webofscience Cited 56 time in scopus
  • Hit : 214
  • Download : 0
Lifelong learning with deep neural networks is well-known to suffer from catastrophic forgetting: the performance on previous tasks drastically degrades when learning a new task. To alleviate this effect, we propose to leverage a large stream of unlabeled data easily obtainable in the wild. In particular, we design a novel class-incremental learning scheme with (a) a new distillation loss, termed global distillation, (b) a learning strategy to avoid overfitting to the most recent task, and (c) a confidence-based sampling method to effectively leverage unlabeled external data. Our experimental results on various datasets, including CIFAR and ImageNet, demonstrate the superiority of the proposed methods over prior methods, particularly when a stream of unlabeled data is accessible: our method shows up to 15.8% higher accuracy and 46.5% less forgetting compared to the state-of-the-art method. The code is available at https://github.com/kibok90/iccv2019-inc.
Publisher
IEEE
Issue Date
2019-10-29
Language
English
Citation

IEEE International Conference on Computer Vision, pp.312 - 321

DOI
10.1109/ICCV.2019.00040
URI
http://hdl.handle.net/10203/269024
Appears in Collection
AI-Conference Papers(학술대회논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 74 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0