Investigation of effective thermoelectric properties of composite with interfacial resistance using micromechanics-based homogenisation

Cited 21 time in webofscience Cited 17 time in scopus
  • Hit : 327
  • Download : 0
We obtained the analytical expression for the effective thermoelectric properties and dimensionless figure of merit of a composite with interfacial electrical and thermal resistances using a micromechanics-based homogenisation. For the first time, we derived the Eshelby tensor for a spherical inclusion as a function of the interfacial resistances and obtained the solutions of the effective Seebeck coefficient and the electrical and thermal conductivities of a composite, which were validated against finite-element analysis (FEA). Our analytical predictions well match the effective properties obtained from FEA with an inclusion volume fraction up to 15%. Because the effective properties were derived with the assumption of a small temperature difference, we discuss a heuristic method for obtaining the effective properties in the case where a thermoelectric composite is subjected to a large temperature difference. (C) 2019 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2019-12
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.144

ISSN
0017-9310
DOI
10.1016/j.ijheatmasstransfer.2019.118620
URI
http://hdl.handle.net/10203/268778
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0