Frequency comb transferred by surface plasmon resonance

Cited 17 time in webofscience Cited 24 time in scopus
  • Hit : 186
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorGeng, Xiao Taoko
dc.contributor.authorChun, Byung Jaeko
dc.contributor.authorSeo, Ji Hoonko
dc.contributor.authorSeo, Kwanyongko
dc.contributor.authorYoon, Hanako
dc.contributor.authorKim, Dong-Eonko
dc.contributor.authorKIM, Young-Jinko
dc.contributor.authorKim, Seungchulko
dc.date.accessioned2019-11-29T07:20:09Z-
dc.date.available2019-11-29T07:20:09Z-
dc.date.created2019-11-28-
dc.date.created2019-11-28-
dc.date.created2019-11-28-
dc.date.issued2016-02-
dc.identifier.citationNATURE COMMUNICATIONS, v.7, no.10685-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/268713-
dc.description.abstractFrequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a subwavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of <6.51 × 10 â '19 in absolute position, 2.92 × 10 â '19 in stability and 1 Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleFrequency comb transferred by surface plasmon resonance-
dc.typeArticle-
dc.identifier.wosid000371028700003-
dc.identifier.scopusid2-s2.0-84959016838-
dc.type.rimsART-
dc.citation.volume7-
dc.citation.issue10685-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/ncomms10685-
dc.contributor.localauthorKIM, Young-Jin-
dc.contributor.nonIdAuthorGeng, Xiao Tao-
dc.contributor.nonIdAuthorChun, Byung Jae-
dc.contributor.nonIdAuthorSeo, Ji Hoon-
dc.contributor.nonIdAuthorSeo, Kwanyong-
dc.contributor.nonIdAuthorYoon, Hana-
dc.contributor.nonIdAuthorKim, Dong-Eon-
dc.contributor.nonIdAuthorKim, Seungchul-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusEXTRAORDINARY OPTICAL-TRANSMISSION-
dc.subject.keywordPlusSTOKES-RAMAN SCATTERING-
dc.subject.keywordPlusPHASE MODULATORS-
dc.subject.keywordPlusDECIMAL PLACE-
dc.subject.keywordPlusNOBEL LECTURE-
dc.subject.keywordPlusLASER-
dc.subject.keywordPlusTIME-
dc.subject.keywordPlusMETROLOGY-
dc.subject.keywordPlusDISTANCE-
dc.subject.keywordPlusCLOCKS-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0