Soft nanocomposite electroadhesives for digital micro- and nanotransfer printing

Cited 27 time in webofscience Cited 16 time in scopus
  • Hit : 372
  • Download : 217
DC FieldValueLanguage
dc.contributor.authorKim, Sanhako
dc.contributor.authorJiang, Yijieko
dc.contributor.authorTowell, Kiera L. Thompsonko
dc.contributor.authorBoutilier, Michael S. H.ko
dc.contributor.authorNayakanti, Nigamaako
dc.contributor.authorCao, Changhongko
dc.contributor.authorChen, Chunxuko
dc.contributor.authorJacob, Christineko
dc.contributor.authorZhao, Hangboko
dc.contributor.authorTurner, Kevin T.ko
dc.contributor.authorHart, A. Johnko
dc.date.accessioned2019-11-04T03:20:05Z-
dc.date.available2019-11-04T03:20:05Z-
dc.date.created2019-10-16-
dc.date.created2019-10-16-
dc.date.issued2019-10-
dc.identifier.citationSCIENCE ADVANCES, v.5, no.10, pp.eaax4790-
dc.identifier.issn2375-2548-
dc.identifier.urihttp://hdl.handle.net/10203/268181-
dc.description.abstract<jats:p>Automated handling of microscale objects is essential for manufacturing of next-generation electronic systems. Yet, mechanical pick-and-place technologies cannot manipulate smaller objects whose surface forces dominate over gravity, and emerging microtransfer printing methods require multidirectional motion, heating, and/or chemical bonding to switch adhesion. We introduce soft nanocomposite electroadhesives (SNEs), comprising sparse forests of dielectric-coated carbon nanotubes (CNTs), which have electrostatically switchable dry adhesion. SNEs exhibit 40-fold lower nominal dry adhesion than typical solids, yet their adhesion is increased >100-fold by applying 30 V to the CNTs. We characterize the scaling of adhesion with surface morphology, dielectric thickness, and applied voltage and demonstrate digital transfer printing of films of Ag nanowires, polymer and metal microparticles, and unpackaged light-emitting diodes.</jats:p>-
dc.languageEnglish-
dc.publisherAMER ASSOC ADVANCEMENT SCIENCE-
dc.titleSoft nanocomposite electroadhesives for digital micro- and nanotransfer printing-
dc.typeArticle-
dc.identifier.wosid000491132700038-
dc.identifier.scopusid2-s2.0-85074068792-
dc.type.rimsART-
dc.citation.volume5-
dc.citation.issue10-
dc.citation.beginningpageeaax4790-
dc.citation.publicationnameSCIENCE ADVANCES-
dc.identifier.doi10.1126/sciadv.aax4790-
dc.contributor.localauthorKim, Sanha-
dc.contributor.nonIdAuthorJiang, Yijie-
dc.contributor.nonIdAuthorTowell, Kiera L. Thompson-
dc.contributor.nonIdAuthorBoutilier, Michael S. H.-
dc.contributor.nonIdAuthorNayakanti, Nigamaa-
dc.contributor.nonIdAuthorCao, Changhong-
dc.contributor.nonIdAuthorChen, Chunxu-
dc.contributor.nonIdAuthorJacob, Christine-
dc.contributor.nonIdAuthorZhao, Hangbo-
dc.contributor.nonIdAuthorTurner, Kevin T.-
dc.contributor.nonIdAuthorHart, A. John-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusGROWTH-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0