Pulverization-Tolerance and Capacity Recovery of Copper Sulfide for High-Performance Sodium Storage

Cited 44 time in webofscience Cited 33 time in scopus
  • Hit : 422
  • Download : 187
DC FieldValueLanguage
dc.contributor.authorPark, Jae Yeolko
dc.contributor.authorKim, Sung Jooko
dc.contributor.authorYim, Kanghoonko
dc.contributor.authorDae, Kyun Seongko
dc.contributor.authorLee, Yongheeko
dc.contributor.authorDao, Khoi Phuongko
dc.contributor.authorPark, Ji Suko
dc.contributor.authorJeong, Han Beomko
dc.contributor.authorChang, Joon Hako
dc.contributor.authorSeo, Hyeon Kookko
dc.contributor.authorAhn, Chi Wonko
dc.contributor.authorYuk, Jong Minko
dc.date.accessioned2019-08-21T09:20:29Z-
dc.date.available2019-08-21T09:20:29Z-
dc.date.created2019-08-19-
dc.date.created2019-08-19-
dc.date.created2019-08-19-
dc.date.issued2019-06-
dc.identifier.citationADVANCED SCIENCE, v.6, no.12-
dc.identifier.issn2198-3844-
dc.identifier.urihttp://hdl.handle.net/10203/264376-
dc.description.abstractFinding suitable electrode materials is one of the challenges for the commercialization of a sodium ion battery due to its pulverization accompanied by high volume expansion upon sodiation. Here, copper sulfide is suggested as a superior electrode material with high capacity, high rate, and long-term cyclability owing to its unique conversion reaction mechanism that is pulverization-tolerant and thus induces the capacity recovery. Such a desirable consequence comes from the combined effect among formation of stable grain boundaries, semi-coherent boundaries, and solid-electrolyte interphase layers. The characteristics enable high cyclic stability of a copper sulfide electrode without any need of size and morphological optimization. This work provides a key finding on high-performance conversion reaction based electrode materials for sodium ion batteries.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titlePulverization-Tolerance and Capacity Recovery of Copper Sulfide for High-Performance Sodium Storage-
dc.typeArticle-
dc.identifier.wosid000477708000015-
dc.identifier.scopusid2-s2.0-85065188861-
dc.type.rimsART-
dc.citation.volume6-
dc.citation.issue12-
dc.citation.publicationnameADVANCED SCIENCE-
dc.identifier.doi10.1002/advs.201900264-
dc.contributor.localauthorYuk, Jong Min-
dc.contributor.nonIdAuthorKim, Sung Joo-
dc.contributor.nonIdAuthorYim, Kanghoon-
dc.contributor.nonIdAuthorLee, Yonghee-
dc.contributor.nonIdAuthorDao, Khoi Phuong-
dc.contributor.nonIdAuthorAhn, Chi Won-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcapacity recovery-
dc.subject.keywordAuthorpulverization tolerance-
dc.subject.keywordAuthorsemi-coherent interfaces-
dc.subject.keywordAuthorsodium ion batteries-
dc.subject.keywordAuthortransmission electron microscopy-
dc.subject.keywordPlusSOLID-ELECTROLYTE INTERPHASE-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusLI4TI5O12-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusBEHAVIOR-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 44 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0