Self-sustaining water-motion sensor platform for continuous monitoring of frequency and amplitude dynamics

Cited 8 time in webofscience Cited 7 time in scopus
  • Hit : 335
  • Download : 0
A self-sustaining sensor platform is a core component for Internet-of-Things and smart-grid systems. However, monitoring, processing, and displaying the minute changes of a targeted-environmental element in a real-time fashion without external power sources is challenging because of a practical difficulty of doing energy harvesting and analysis of dynamics at the same time. Here, we present a self-sustaining water-motion-sensing (SS-WMS) platform to monitor and display the time-varying dynamics of water-motion, i.e., frequency and amplitude, using only the energy harvested from the water-motion itself. A water-contact triboelectric nanogenerator (WC-TENG) produces electrical energy, correlated with the repetitive squeezing and releasing of a water droplet. The SS-WMS integrated circuit (IC) harvests the energy and simultaneously analyzes the dynamics of water-motion, which is converted into binary codes to be displayed through LEDs powered by the gathered energy. The proposed platform would contribute to advanced sensing functions of a self-sustaining system for various targeted-ambient elements.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2017-05
Language
English
Article Type
Article
Citation

NANO ENERGY, v.35, pp.179 - 188

ISSN
2211-2855
DOI
10.1016/j.nanoen.2017.03.040
URI
http://hdl.handle.net/10203/264100
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0