Single-color centers implanted in diamond nanostructures

Cited 48 time in webofscience Cited 51 time in scopus
  • Hit : 403
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHausmann, Birgit J. M.ko
dc.contributor.authorBabinec, Thomas M.ko
dc.contributor.authorChoy, Jennifer T.ko
dc.contributor.authorHodges, Jonathan S.ko
dc.contributor.authorHong, Sungkunko
dc.contributor.authorBulu, Irfanko
dc.contributor.authorYacoby, Amirko
dc.contributor.authorLukin, Mikhail D.ko
dc.contributor.authorLoncar, Markoko
dc.date.accessioned2019-05-29T08:25:23Z-
dc.date.available2019-05-29T08:25:23Z-
dc.date.created2019-05-29-
dc.date.issued2011-04-
dc.identifier.citationNEW JOURNAL OF PHYSICS, v.13-
dc.identifier.issn1367-2630-
dc.identifier.urihttp://hdl.handle.net/10203/262337-
dc.description.abstractThe development of material-processing techniques that can be used to generate optical diamond nanostructures containing a single-color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (similar to 20 nm) to generate nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal prior to device fabrication. Individual NV centers are then mechanically isolated by etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (> 10%) of the devices contain a single NV center. The second device demonstrates 'deep' (similar to 1 mu m) implantation of individual NV centers into diamond nanowires as a post-processing step. The high single-photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allowed us to observe sustained photon anti-bunching even at high pump powers.-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.titleSingle-color centers implanted in diamond nanostructures-
dc.typeArticle-
dc.identifier.wosid000289991400002-
dc.identifier.scopusid2-s2.0-79955372733-
dc.type.rimsART-
dc.citation.volume13-
dc.citation.publicationnameNEW JOURNAL OF PHYSICS-
dc.identifier.doi10.1088/1367-2630/13/4/045004-
dc.contributor.localauthorHong, Sungkun-
dc.contributor.nonIdAuthorHausmann, Birgit J. M.-
dc.contributor.nonIdAuthorBabinec, Thomas M.-
dc.contributor.nonIdAuthorChoy, Jennifer T.-
dc.contributor.nonIdAuthorHodges, Jonathan S.-
dc.contributor.nonIdAuthorBulu, Irfan-
dc.contributor.nonIdAuthorYacoby, Amir-
dc.contributor.nonIdAuthorLukin, Mikhail D.-
dc.contributor.nonIdAuthorLoncar, Marko-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusPHOTONIC CRYSTAL CAVITY-
dc.subject.keywordPlusROOM-TEMPERATURE-
dc.subject.keywordPlusEMISSION-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusRESOLUTION-
dc.subject.keywordPlusSPINS-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 48 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0