Quantum control of proximal spins using nanoscale magnetic resonance imaging

Cited 113 time in webofscience Cited 111 time in scopus
  • Hit : 426
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorGrinolds, M. S.ko
dc.contributor.authorMaletinsky, P.ko
dc.contributor.authorHong, Sungkunko
dc.contributor.authorLukin, M. D.ko
dc.contributor.authorWalsworth, R. L.ko
dc.contributor.authorYacoby, A.ko
dc.date.accessioned2019-05-29T08:25:21Z-
dc.date.available2019-05-29T08:25:21Z-
dc.date.created2019-05-29-
dc.date.issued2011-09-
dc.identifier.citationNATURE PHYSICS, v.7, no.9, pp.687 - 692-
dc.identifier.issn1745-2473-
dc.identifier.urihttp://hdl.handle.net/10203/262336-
dc.description.abstractQuantum control of individual spins in condensed-matter systems is an emerging field with wide-ranging applications in spintronics(1), quantum computation(2) and sensitive magnetometry(3). Recent experiments have demonstrated the ability to address and manipulate single electron spins through either optical(4,5) or electrical techniques(6-8). However, it is a challenge to extend individual-spin control to nanometre-scale multi-electron systems, as individual spins are often irre-solvable with existing methods. Here we demonstrate that coherent individual-spin control can be achieved with few-nanometre resolution for proximal electron spins by carrying out single-spin magnetic resonance imaging (MRI), which is realized using a scanning-magnetic-field gradient that is both strong enough to achieve nanometre spatial resolution and sufficiently stable for coherent spin manipulations. We apply this scanning-field-gradient MRI technique to electronic spins in nitrogen-vacancy (NV) centres in diamond and achieve nanometre resolution in imaging, characterization and manipulation of individual spins. For NV centres, our results in individual-spin control demonstrate an improvement of nearly two orders of magnitude in spatial resolution when compared with conventional optical diffraction-limited techniques. This scanning-field-gradient microscope enables a wide range of applications including materials characterization, spin entanglement and nanoscale magnetometry.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleQuantum control of proximal spins using nanoscale magnetic resonance imaging-
dc.typeArticle-
dc.identifier.wosid000294485400013-
dc.identifier.scopusid2-s2.0-80052458511-
dc.type.rimsART-
dc.citation.volume7-
dc.citation.issue9-
dc.citation.beginningpage687-
dc.citation.endingpage692-
dc.citation.publicationnameNATURE PHYSICS-
dc.identifier.doi10.1038/NPHYS1999-
dc.contributor.localauthorHong, Sungkun-
dc.contributor.nonIdAuthorGrinolds, M. S.-
dc.contributor.nonIdAuthorMaletinsky, P.-
dc.contributor.nonIdAuthorLukin, M. D.-
dc.contributor.nonIdAuthorWalsworth, R. L.-
dc.contributor.nonIdAuthorYacoby, A.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSINGLE SPIN-
dc.subject.keywordPlusDIAMOND-
dc.subject.keywordPlusRESOLUTION-
dc.subject.keywordPlusMICROSCOPY-
dc.subject.keywordPlusCENTERS-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusFABRICATION-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 113 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0