3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging

Cited 48 time in webofscience Cited 32 time in scopus
  • Hit : 335
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYang, Yanqinko
dc.contributor.authorGoh, Kunliko
dc.contributor.authorWeerachanchai, Piyaratko
dc.contributor.authorBae, Tae-Hyunko
dc.date.accessioned2019-05-29T08:25:02Z-
dc.date.available2019-05-29T08:25:02Z-
dc.date.created2019-05-29-
dc.date.created2019-05-29-
dc.date.created2019-05-29-
dc.date.created2019-05-29-
dc.date.issued2019-03-
dc.identifier.citationJOURNAL OF MEMBRANE SCIENCE, v.574, pp.235 - 242-
dc.identifier.issn0376-7388-
dc.identifier.urihttp://hdl.handle.net/10203/262325-
dc.description.abstractThe physicochemical properties of filler materials are critical considerations influencing the separation performances of mixed-matrix membranes (MMMs). Herein, a three-dimensional covalent organic framework (3D-COF) with a secondary amine-containing backbone was designed to offer large surface area, high porosity and good affinity toward CO2 molecules. Membranes prepared from this 3D-COF filler and a 6FDA-DAM polyimide matrix demonstrated a more significant enhancement in the CO2/CH4 separation performance, which was unattainable by its 2D-COF analogue. Specifically, with 10 and 15 wt% loadings of 3D-COF fillers, the MMMs membranes were able to enhance the CO2 permeability by similar to 57% and 140%, respectively, at a comparable, if not better, CO2/CH4 selectivity than the unfilled membrane. Furthermore, glassy polymers of high fractional free volume such as 6FDA-DAM tend to suffer from a ubiquitous loss in performance over time due to a physical aging effect. In this regard, the 3D-COF was effective in slowing down the aging process by capitalizing on its high surface area and amine functional groups to immobilize and rigidify the 6FDA-DAM polymer chains, preventing the collapse of the free volume. This allows 97% of the initial membrane performances to be effectively retained after 240 days of aging. Our findings suggest the potential of morphologically-tuned COFs to develop high-performance MMMs with strong practical relevance.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.title3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging-
dc.typeArticle-
dc.identifier.wosid000455487100024-
dc.identifier.scopusid2-s2.0-85059352737-
dc.type.rimsART-
dc.citation.volume574-
dc.citation.beginningpage235-
dc.citation.endingpage242-
dc.citation.publicationnameJOURNAL OF MEMBRANE SCIENCE-
dc.identifier.doi10.1016/j.memsci.2018.12.078-
dc.contributor.localauthorBae, Tae-Hyun-
dc.contributor.nonIdAuthorYang, Yanqin-
dc.contributor.nonIdAuthorGoh, Kunli-
dc.contributor.nonIdAuthorWeerachanchai, Piyarat-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthor3D covalent organic framework-
dc.subject.keywordAuthorMixed-matrix membrane-
dc.subject.keywordAuthorCO2 capture-
dc.subject.keywordAuthorCO2/CH4 separation-
dc.subject.keywordAuthorPhysical aging-
dc.subject.keywordPlusMIXED-MATRIX MEMBRANES-
dc.subject.keywordPlusGAS PERMEATION-
dc.subject.keywordPlusCO2-
dc.subject.keywordPlusSEPARATION-
dc.subject.keywordPlusPERMEABILITY-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusPOLYMERS-
dc.subject.keywordPlusMMMS-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 48 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0