ABM: Looping reference-aware cache management scheme for media-on-demand server

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 45
  • Download : 0
Legacy buffer cache management schemes for multimedia server are grounded at the assumption that the application sequentially accesses the multimedia file. However, user access pattern may not be sequential in some circumstances, for example, in distance learning application, where the user may exploit the VCR-like function(rewind and play) of the system and accesses the particular segments of video repeatedly in the middle of sequential playback. Such a looping reference can cause a significant performance degradation of interval-based caching algorithms. And thus an appropriate buffer cache management scheme is required in order to deliver desirable performance even under the workload that exhibits looping reference behavior. We propose Adaptive Buffer cache Management(ABM) scheme which intelligently adapts to the file access characteristics. For each opened file, ABM applies either the LRU replacement or the interval-based caching depending on the Looping Reference Indicator, which indicates that how strong temporally localized access pattern is. According to our experiment, ABM exhibits better buffer cache miss ratio than interval-based caching or LRU, especially when the workload exhibits not only sequential but also looping reference property.
Publisher
SPRINGER-VERLAG BERLIN
Issue Date
2002
Language
English
Article Type
Article; Proceedings Paper
Citation

XML-BASED DATA MANAGEMENT AND MULTIMEDIA ENGINEERING-EDBT 2002 WORKSHOPS, v.2490, pp.484 - 500

ISSN
0302-9743
URI
http://hdl.handle.net/10203/261414
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0