Lysosomal Machinery Drives Extracellular Acidification to Direct Non-apoptotic Cell Death

Cited 21 time in webofscience Cited 12 time in scopus
  • Hit : 728
  • Download : 234
DC FieldValueLanguage
dc.contributor.authorMondragon, Albert A.ko
dc.contributor.authorYalonetskaya, Allako
dc.contributor.authorOrtega, Anthony J.ko
dc.contributor.authorZhang, Yuanhangko
dc.contributor.authorNaranjo, Oandyko
dc.contributor.authorElguero, Johnnyko
dc.contributor.authorChung, Won-Sukko
dc.contributor.authorMcCall, Kimberlyko
dc.date.accessioned2019-04-18T02:10:16Z-
dc.date.available2019-04-18T02:10:16Z-
dc.date.created2019-04-16-
dc.date.created2019-04-16-
dc.date.created2019-04-16-
dc.date.issued2019-04-
dc.identifier.citationCELL REPORTS, v.27, no.1, pp.11 - +-
dc.identifier.issn2211-1247-
dc.identifier.urihttp://hdl.handle.net/10203/261023-
dc.description.abstractCell death is a fundamental aspect of development, homeostasis, and disease; yet, our understanding of non-apoptotic forms of cell death is limited. One such form is phagoptosis, in which one cell utilizes phagocytosis machinery to kill another cell that would otherwise continue living. We have previously identified a non-autonomous requirement of phagocytosis machinery for the developmental programmed cell death of germline nurse cells in the Drosophila ovary; however, the precise mechanism of death remained elusive. Here, we show that lysosomal machinery acting in epithelial follicle cells is used to non-autonomously induce the death of nearby germline cells. Stretch follicle cells recruit V-ATPases and chloride channels to their plasma membrane to extracellularly acidify the germline and release cathepsins that destroy the nurse cells. Our results reveal a role for lysosomal machinery acting at the plasma membrane to cause the death of neighboring cells, providing insight into mechanisms driving non-autonomous cell death.-
dc.languageEnglish-
dc.publisherCELL PRESS-
dc.titleLysosomal Machinery Drives Extracellular Acidification to Direct Non-apoptotic Cell Death-
dc.typeArticle-
dc.identifier.wosid000463187700002-
dc.identifier.scopusid2-s2.0-85063525881-
dc.type.rimsART-
dc.citation.volume27-
dc.citation.issue1-
dc.citation.beginningpage11-
dc.citation.endingpage+-
dc.citation.publicationnameCELL REPORTS-
dc.identifier.doi10.1016/j.celrep.2019.03.034-
dc.contributor.localauthorChung, Won-Suk-
dc.contributor.nonIdAuthorMondragon, Albert A.-
dc.contributor.nonIdAuthorYalonetskaya, Alla-
dc.contributor.nonIdAuthorOrtega, Anthony J.-
dc.contributor.nonIdAuthorZhang, Yuanhang-
dc.contributor.nonIdAuthorNaranjo, Oandy-
dc.contributor.nonIdAuthorElguero, Johnny-
dc.contributor.nonIdAuthorMcCall, Kimberly-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusDROSOPHILA NURSE CELLS-
dc.subject.keywordPlusMEMBRANE V-ATPASE-
dc.subject.keywordPlusMICROGLIAL PHAGOCYTOSIS-
dc.subject.keywordPlusEPITHELIAL-CELLS-
dc.subject.keywordPlusINTRACELLULAR PH-
dc.subject.keywordPlusGENES-
dc.subject.keywordPlusENGULFMENT-
dc.subject.keywordPlusSECRETION-
dc.subject.keywordPlusHOMEOSTASIS-
dc.subject.keywordPlusEXPRESSION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0