Real-Time Monitoring of a Botulinum Neurotoxin Using All-Carbon Nanotube-Based Field-Effect Transistor Devices

Cited 6 time in webofscience Cited 5 time in scopus
  • Hit : 344
  • Download : 0
The possibility of exposure to botulinum neurotoxin (BoNT), a powerful and potential bioterrorism agent, is considered to be ever increasing. The current gold-standard assay, live-mouse lethality, exhibits high sensitivity but has limitations including long assay times, whereas other assays evince rapidity but lack factors such as real-time monitoring or portability. In this study, we aimed to devise a novel detection system that could detect BoNT at below-nanomolar concentrations in the form of a stretchable biosensor. We used a field-effect transistor with a p-type channel and electrodes, along with a channel comprising aligned carbon nanotube layers to detect the type E light chain of BoNT (BoNT/E-Lc). The detection of BoNT/E-Lc entailed observing the cleavage of a unique peptide and the specific bonding between BoNT/E-Lc and antibody BoNT/E-Lc (Anti-BoNT/E-Lc). The unique peptide was cleaved by 60 pM BoNT/E-Lc; notably, 52 fM BoNT/E-Lc was detected within 1 min in the device with the antibody in the bent state. These results demonstrated that an all-carbon nanotube-based device (all-CNT-based device) could be produced without a complicated fabrication process and could be used as a biosensor with high sensitivity, suggesting its potential development as a wearable BoNT biosensor.
Publisher
MDPI
Issue Date
2018-12
Language
English
Article Type
Article
Citation

SENSORS, v.18, no.12

ISSN
1424-8220
DOI
10.3390/s18124235
URI
http://hdl.handle.net/10203/250222
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0