Understanding the redox reaction mechanism of vanadium electrolytes in all-vanadium redox flow batteries

Cited 35 time in webofscience Cited 0 time in scopus
  • Hit : 665
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Chanyongko
dc.contributor.authorNoh, Hyungjunko
dc.contributor.authorKim, Soohyunko
dc.contributor.authorKim, Riyulko
dc.contributor.authorLee, Juhyukko
dc.contributor.authorHeo, Jiyunko
dc.contributor.authorKim, Hee-Takko
dc.date.accessioned2019-01-22T08:29:51Z-
dc.date.available2019-01-22T08:29:51Z-
dc.date.created2018-12-20-
dc.date.created2018-12-20-
dc.date.created2018-12-20-
dc.date.issued2019-02-
dc.identifier.citationJOURNAL OF ENERGY STORAGE, v.21, pp.321 - 327-
dc.identifier.issn2352-152X-
dc.identifier.urihttp://hdl.handle.net/10203/248979-
dc.description.abstractVanadium redox flow batteries (VRFBs) have been highlighted for use in energy storage systems. In spite of the many studies on the redox reaction of vanadium ions, the mechanisms for positive and negative electrode reaction are under debate. In this work, we conduct an impedance analysis for positive and negative symmetric cells with untreated and heat-treated carbon felt (CF) electrodes to identify the reaction mechanisms. The negative electrode reaction (V2+/V3+) is highly dependent on the heat treatment and reaction temperature, which is a feature of an inner-sphere mechanism, whereas the positive electrode reaction (VO2+/VO2+) reaction is rather insensitive to the heat treatment and reaction temperature, suggesting an outer-sphere mechanism. An atomistic molecular dynamics simulation suggests that the different mechanisms are quite feasible considering the difference in the structure of the hydration shell for the vanadium ions. The deeper understanding of the reaction mechanism and its influence on cell performance will be helpful to advance VRFBs.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.titleUnderstanding the redox reaction mechanism of vanadium electrolytes in all-vanadium redox flow batteries-
dc.typeArticle-
dc.identifier.wosid000459203100031-
dc.identifier.scopusid2-s2.0-85058177079-
dc.type.rimsART-
dc.citation.volume21-
dc.citation.beginningpage321-
dc.citation.endingpage327-
dc.citation.publicationnameJOURNAL OF ENERGY STORAGE-
dc.identifier.doi10.1016/j.est.2018.11.002-
dc.contributor.localauthorKim, Hee-Tak-
dc.contributor.nonIdAuthorHeo, Jiyun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorVanadium redox flow battery-
dc.subject.keywordAuthorImpedance analysis-
dc.subject.keywordAuthorSymmetric cell-
dc.subject.keywordAuthorInner sphere mechanism-
dc.subject.keywordAuthorOuter sphere mechanism-
dc.subject.keywordPlusELECTROCHEMICAL-BEHAVIOR-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusCOUPLES-
dc.subject.keywordPlusCELL-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 35 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0