Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation

Cited 45 time in webofscience Cited 0 time in scopus
  • Hit : 589
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJeong, Heeyeongko
dc.contributor.authorSignetti, Stefanoko
dc.contributor.authorHan, Tong-Seokko
dc.contributor.authorRyu, Seunghwako
dc.date.accessioned2018-11-22T06:41:09Z-
dc.date.available2018-11-22T06:41:09Z-
dc.date.created2018-11-13-
dc.date.created2018-11-13-
dc.date.issued2018-12-
dc.identifier.citationCOMPUTATIONAL MATERIALS SCIENCE, v.155, pp.483 - 492-
dc.identifier.issn0927-0256-
dc.identifier.urihttp://hdl.handle.net/10203/246682-
dc.description.abstractThe crack phase field model has been well established and validated for a variety of complex crack propagation patterns within a homogeneous medium under either tensile or shear loading. However, relatively less attention has been paid to crack propagation under combined tensile and shear loading or crack propagation within composite materials made of two constituents with very different elastic moduli. In this work, we compare crack propagation under such circumstances modelled by two representative formulations, anisotropic and hybrid formulations, which have distinct stiffness degradation schemes upon crack propagation. We demonstrate that the hybrid formulation is more adequate for modeling crack propagation problems under combined loading because the residual stiffness of the damaged zone in the anisotropic formulation may lead to spurious crack growth and altered load-displacement response.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectBRITTLE-FRACTURE-
dc.subjectABAQUS IMPLEMENTATION-
dc.subjectFAILURE CRITERIA-
dc.subjectELASTICITY-
dc.subjectAPPROXIMATION-
dc.subjectFRAMEWORK-
dc.subjectSOLIDS-
dc.subjectDESIGN-
dc.subjectBONE-
dc.titlePhase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation-
dc.typeArticle-
dc.identifier.wosid000447748900056-
dc.identifier.scopusid2-s2.0-85053392546-
dc.type.rimsART-
dc.citation.volume155-
dc.citation.beginningpage483-
dc.citation.endingpage492-
dc.citation.publicationnameCOMPUTATIONAL MATERIALS SCIENCE-
dc.identifier.doi10.1016/j.commatsci.2018.09.021-
dc.contributor.localauthorRyu, Seunghwa-
dc.contributor.nonIdAuthorSignetti, Stefano-
dc.contributor.nonIdAuthorHan, Tong-Seok-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPhase field fracture-
dc.subject.keywordAuthorCrack propagation-
dc.subject.keywordAuthorHeterogeneous composites-
dc.subject.keywordAuthorHybrid formulation-
dc.subject.keywordAuthorFinite element method-
dc.subject.keywordPlusBRITTLE-FRACTURE-
dc.subject.keywordPlusABAQUS IMPLEMENTATION-
dc.subject.keywordPlusFAILURE CRITERIA-
dc.subject.keywordPlusELASTICITY-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordPlusSOLIDS-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusBONE-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 45 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0