Surface modification of austenitic stainless steel for corrosion resistance in high temperature supercritical-carbon dioxide environment

Cited 27 time in webofscience Cited 0 time in scopus
  • Hit : 469
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Sung Hwanko
dc.contributor.authorSubramanian, Gokul Obulanko
dc.contributor.authorKim, Chaewonko
dc.contributor.authorJang, Changheuiko
dc.contributor.authorPark, Keun Manko
dc.date.accessioned2018-09-18T06:22:57Z-
dc.date.available2018-09-18T06:22:57Z-
dc.date.created2018-09-04-
dc.date.created2018-09-04-
dc.date.issued2018-09-
dc.identifier.citationSURFACE & COATINGS TECHNOLOGY, v.349, pp.415 - 425-
dc.identifier.issn0257-8972-
dc.identifier.urihttp://hdl.handle.net/10203/245553-
dc.description.abstractSurface-modification was applied to austenitic stainless steel 316LN in order to improve the corrosion resistance in high temperature supercritical-carbon dioxide (S-CO2) environment. The surface-modification methods consisted of deposition of either a single Al layer or a NiAl bi-layer on the surface, followed by inter-diffusion heat treatments. The former resulted in formation of a surface layer composed of a mixture of NiAl and ferrite phases, and the latter resulted in formation of a continuous NiAl surface layer. Surface-modified 316LN showed reduced weight gains than the as-received 316LN alloy after exposure to S-CO2 at 650 degrees C (20 MPa) for 500 h. Pre-oxidation in helium at 900 degrees C before S-CO2 exposure further improved corrosion resistance by forming inner a Al2O3 layer. On the other hand, the extent of inter-diffusion zone was less for the specimen with a continuous NiAl surface layer before and after S-CO2 exposure.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectFERRITIC-MARTENSITIC STEELS-
dc.subjectCO2 BRAYTON CYCLES-
dc.subjectALUMINIDE COATINGS-
dc.subjectOXIDATION-
dc.subjectALLOYS-
dc.subjectBEHAVIOR-
dc.titleSurface modification of austenitic stainless steel for corrosion resistance in high temperature supercritical-carbon dioxide environment-
dc.typeArticle-
dc.identifier.wosid000441492600044-
dc.identifier.scopusid2-s2.0-85048436870-
dc.type.rimsART-
dc.citation.volume349-
dc.citation.beginningpage415-
dc.citation.endingpage425-
dc.citation.publicationnameSURFACE & COATINGS TECHNOLOGY-
dc.identifier.doi10.1016/j.surfcoat.2018.06.014-
dc.contributor.localauthorJang, Changheui-
dc.contributor.nonIdAuthorKim, Chaewon-
dc.contributor.nonIdAuthorPark, Keun Man-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSurface-modification-
dc.subject.keywordAuthorAustenitic stainless steel-
dc.subject.keywordAuthorNickel aluminide-
dc.subject.keywordAuthorInter-diffusion heat treatment-
dc.subject.keywordAuthorSupercritical-carbon dioxide-
dc.subject.keywordPlusFERRITIC-MARTENSITIC STEELS-
dc.subject.keywordPlusCO2 BRAYTON CYCLES-
dc.subject.keywordPlusALUMINIDE COATINGS-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusALLOYS-
dc.subject.keywordPlusBEHAVIOR-
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0