Fabrication of 3D Nanoshell Structured ZnO Thermoelectric Material via Proximity Field Nanopatterning

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 592
  • Download : 0
DC FieldValueLanguage
dc.contributor.author김기선ko
dc.contributor.author박준용ko
dc.contributor.author박선화ko
dc.contributor.author안창의ko
dc.contributor.author조동휘ko
dc.contributor.author남상현ko
dc.contributor.author현가예ko
dc.contributor.author함영진ko
dc.contributor.authorAng, Jade Nadine S.ko
dc.contributor.author송재용ko
dc.contributor.author전석우ko
dc.date.accessioned2018-09-18T03:54:16Z-
dc.date.available2018-09-18T03:54:16Z-
dc.date.created2018-08-23-
dc.date.created2018-08-23-
dc.date.issued2018-04-25-
dc.identifier.citation2018년도 대한금속 및 재료학회 춘계학술대회-
dc.identifier.urihttp://hdl.handle.net/10203/245255-
dc.description.abstractRecently, many researchers have focused on realizing 3D nanostructured materials for enhanced functionality with high specific surface area and low relative density. Especially, 3D nanostructures can be applied to thermoelectric materials due to their low thermal conductivity. ZnO is a potential thermoelectric material because of its non-toxicity, high thermal stability, and relatively high Seebeck coefficient (S) of metal oxides. However, the extremely low figure of merit (zT), which comes from a high thermal conductivity (κ) over 40 W/mK, limits the thermoelectric application of ZnO. Here, we propose a new strategy for achieving a reduced κ and a correspondingly increased zT of pure ZnO over a wide temperature range from 333 K to 723 K by forming an ~72 nm thick, 3D nanoshell structure. The suppressed κ of the 3D ZnO film is ~3.6 W/mK at 333 K, which is ~38 times lower than that of the blanket ZnO film (3.2 μm thick), which was set as a reference. The experimental zT of the 3D ZnO film is ~0.017 at 333 K, which is the highest value among ZnO reported to date and is estimated to increase by ~0.072 at 693 K according to the Debye-Callaway approach. Largearea(~1 in2) fabrication of the 3D ZnO film with high structural uniformity allows the realization of an integrated thermoelectric device,which generates ~60 mV at a temperature difference of 40 K along the in-plane direction.-
dc.languageKorean-
dc.publisher대한금속 및 재료학회-
dc.titleFabrication of 3D Nanoshell Structured ZnO Thermoelectric Material via Proximity Field Nanopatterning-
dc.typeConference-
dc.type.rimsCONF-
dc.citation.publicationname2018년도 대한금속 및 재료학회 춘계학술대회-
dc.identifier.conferencecountryKO-
dc.identifier.conferencelocation제주국제컨벤션센터-
dc.contributor.localauthor전석우-
dc.contributor.nonIdAuthor박준용-
dc.contributor.nonIdAuthor박선화-
dc.contributor.nonIdAuthorAng, Jade Nadine S.-
dc.contributor.nonIdAuthor송재용-
Appears in Collection
MS-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0