Effect of mesocelluar carbon foam electrode material on performance of vanadium redox flow battery

Cited 39 time in webofscience Cited 0 time in scopus
  • Hit : 194
  • Download : 0
Languid reaction rate of VO2+/VO2+ redox couple is a problem to solve for improving performance of vanadium redox flow battery (VRFB). To facilitate the slow reaction materials including large pore sized mesocellular carbon foam (MSU-F-C and Pt/MSU-F-C) are used as new catalyst. Their catalytic activity and reaction reversibility are estimated and compared with other catalysts, while cycle tests of charge-discharge and polarization curve tests are implemented to evaluate energy efficiency (EE) and maximum power density (MPD). Their crystal structure, specific surface area and catalyst morphology are measured by XRD, BET and TEM. The new catalysts indicate high peak current ratio, small peak potential difference and high electron transfer rate constant, proving that their catalytic activity and reaction reversibility are superior. Regarding the charge-discharge and polarization curve tests, the VRFB single cells including new catalysts show high EE as well as low overpotential and internal resistance and high MPD. Such excellent results are due to mostly unique characteristics of MSU-F-C having large interconnected mesopores, high surface area and large contents of hydroxyl groups that serve as active sites for VO2+/VO2+ redox reaction and platinums (Pts) supporting the MSU-F-C. Indeed, employment of the catalysts including MSU-F-C leads to enhancement in performance of VRFB by facilitating the slow VO2+/VO2+ redox reaction. (C) 2014 Elsevier B.V. All rights reserved.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2015-03
Language
English
Article Type
Article
Citation

JOURNAL OF POWER SOURCES, v.278, pp.245 - 254

ISSN
0378-7753
DOI
10.1016/j.jpowsour.2014.12.074
URI
http://hdl.handle.net/10203/245042
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 39 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0