Structural Effect on Electrochemical Performance of Ordered Porous Carbon Electrodes for Na-Ion Batteries

Cited 61 time in webofscience Cited 0 time in scopus
  • Hit : 127
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJo, Changshinko
dc.contributor.authorPark, Yuwonko
dc.contributor.authorJeong, Jooyoungko
dc.contributor.authorLee, Kyu Taeko
dc.contributor.authorLee, Jinwooko
dc.date.accessioned2018-08-20T08:09:59Z-
dc.date.available2018-08-20T08:09:59Z-
dc.date.created2018-08-08-
dc.date.created2018-08-08-
dc.date.created2018-08-08-
dc.date.issued2015-06-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, v.7, no.22, pp.11748 - 11754-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/10203/245036-
dc.description.abstractOrdered meso- or macro-porous carbons (OMCs) were applied as anodes in Na ion battery (NIB) systems. Three different block copolymers (BCPs) enabled us to control the pore sizes (6, 33, and 60 nm) while maintaining the same 2-D hexagonal structure. To exclude other effects, the factors including precursors, particle sizes, and degrees of graphitization were controlled. The structures of OMCs were characterized by nitrogen physisorption, Raman spectroscopy, X-ray analyses (XRD and SAXS), and microscopies (TEM and SEM). With a galvanostatic charge/discharge, we confirmed that OMC electrode with medium pore size (OMC-33) exhibited a higher reversible capacity of 134 mA h g(-1) (at 20th cycle) and faster rate capability (61% retention, current densities from 50 to 5000 mA g(-1) than those of OMC-6, and OMC-60 electrodes. The high performance of OMC-33 is attributed to the combined effects of pore size and wall thickness which was supported by charge/discharge and electrochemical impedance spectroscopy (EIS) analyses.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleStructural Effect on Electrochemical Performance of Ordered Porous Carbon Electrodes for Na-Ion Batteries-
dc.typeArticle-
dc.identifier.wosid000356316700007-
dc.identifier.scopusid2-s2.0-84935887751-
dc.type.rimsART-
dc.citation.volume7-
dc.citation.issue22-
dc.citation.beginningpage11748-
dc.citation.endingpage11754-
dc.citation.publicationnameACS APPLIED MATERIALS & INTERFACES-
dc.identifier.doi10.1021/acsami.5b03186-
dc.contributor.localauthorLee, Jinwoo-
dc.contributor.nonIdAuthorJo, Changshin-
dc.contributor.nonIdAuthorPark, Yuwon-
dc.contributor.nonIdAuthorJeong, Jooyoung-
dc.contributor.nonIdAuthorLee, Kyu Tae-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorsodium ion battery-
dc.subject.keywordAuthorelectrode-
dc.subject.keywordAuthorporous carbon-
dc.subject.keywordAuthorself-assembly-
dc.subject.keywordAuthornanomaterials-
dc.subject.keywordPlusONE-POT SYNTHESIS-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusRATE CAPABILITY-
dc.subject.keywordPlusCARBON/SILICA NANOCOMPOSITES-
dc.subject.keywordPlusDIRECT ACCESS-
dc.subject.keywordPlusSODIUM-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusCAPACITANCE-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 61 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0