Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 250
  • Download : 0
We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0-100 microns are generated, corresponding to a material removal rate of up to 20.1 mu m(3)/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries. (C) 2015 AIP Publishing LLC.
Publisher
AMER INST PHYSICS
Issue Date
2015-10
Language
English
Article Type
Article
Keywords

BEAM; GROWTH; STRENGTH; ARRAYS; SENSOR; DAMAGE

Citation

APPLIED PHYSICS LETTERS, v.107, no.14

ISSN
0003-6951
DOI
10.1063/1.4932522
URI
http://hdl.handle.net/10203/245025
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0