Monte Carlo simulations of criticality safety assessments of transuranic element storage in a pyroprocess facility

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 481
  • Download : 187
DC FieldValueLanguage
dc.contributor.authorKim, Jinhwanko
dc.contributor.authorKim, Jisooko
dc.contributor.authorLim, Kyung Taekko
dc.contributor.authorAhn, Seong Kyuko
dc.contributor.authorPark, Se Hwanko
dc.contributor.authorCho, Gyuseongko
dc.date.accessioned2018-08-20T07:46:58Z-
dc.date.available2018-08-20T07:46:58Z-
dc.date.created2018-08-06-
dc.date.created2018-08-06-
dc.date.created2018-08-06-
dc.date.created2018-08-06-
dc.date.issued2018-08-
dc.identifier.citationNUCLEAR ENGINEERING AND TECHNOLOGY, v.50, no.6, pp.815 - 819-
dc.identifier.issn1738-5733-
dc.identifier.urihttp://hdl.handle.net/10203/244811-
dc.description.abstractIn this study, criticality safety assessments of the potential for storing transuranic element (TRU) ingots via a pyroprocess were evaluated to determine the appropriate TRU storage design parameters, in this case the ratio of the TRU ingot height to the radius and the number of TRU ingot canisters stacked within a container. Various accident situations were modeled over a modeling period of 5 years for a cumulative inventory of TRU ingots with various water densities in submerged containers and with various pitches between the containers in the facility. Under these combinations, we calculated the threshold of TRU height and radius ratio depending on the number of canisters in a container to keep the stored TRU in a subcritical state. The ratio of the TRU ingot height to radius should not exceed 4.5, 1.1, 0.5, 0.3, and 0.2 for two, three, four, five, and six levels of stacked canisters in a container, respectively. (C) 2018 Korean Nuclear Society, Published by Elsevier Korea LLC.-
dc.languageEnglish-
dc.publisherKOREAN NUCLEAR SOC-
dc.titleMonte Carlo simulations of criticality safety assessments of transuranic element storage in a pyroprocess facility-
dc.typeArticle-
dc.identifier.wosid000439417300001-
dc.identifier.scopusid2-s2.0-85046856973-
dc.type.rimsART-
dc.citation.volume50-
dc.citation.issue6-
dc.citation.beginningpage815-
dc.citation.endingpage819-
dc.citation.publicationnameNUCLEAR ENGINEERING AND TECHNOLOGY-
dc.identifier.doi10.1016/j.net.2018.03.021-
dc.contributor.localauthorCho, Gyuseong-
dc.contributor.nonIdAuthorKim, Jisoo-
dc.contributor.nonIdAuthorAhn, Seong Kyu-
dc.contributor.nonIdAuthorPark, Se Hwan-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCriticality safety-
dc.subject.keywordAuthorMonte Carlo simulation-
dc.subject.keywordAuthorPyroprocess-
dc.subject.keywordAuthorTransuranic element storage-
dc.subject.keywordAuthorCriticality safety-
dc.subject.keywordAuthorMonte Carlo simulation-
dc.subject.keywordAuthorPyroprocess-
dc.subject.keywordAuthorTransuranic element storage-
dc.subject.keywordPlusRELIABILITY SAFEGUARDS METHODOLOGY-
dc.subject.keywordPlusBURN-UP CREDIT-
dc.subject.keywordPlusCASK-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusRELIABILITY SAFEGUARDS METHODOLOGY-
dc.subject.keywordPlusBURN-UP CREDIT-
dc.subject.keywordPlusCASK-
dc.subject.keywordPlusDESIGN-

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0