The Multiple-Update-Infill Sampling Method Using Minimum Energy Design for Sequential Surrogate Modeling

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 1214
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHwang, Yongmoonko
dc.contributor.authorCha, Sang Lyulko
dc.contributor.authorKim, Sehoonko
dc.contributor.authorJin, Seung-Seopko
dc.contributor.authorJung, Hyung-Joko
dc.date.accessioned2018-07-24T02:25:30Z-
dc.date.available2018-07-24T02:25:30Z-
dc.date.created2018-07-04-
dc.date.created2018-07-04-
dc.date.created2018-07-04-
dc.date.issued2018-04-
dc.identifier.citationAPPLIED SCIENCES-BASEL, v.8, no.4-
dc.identifier.issn2076-3417-
dc.identifier.urihttp://hdl.handle.net/10203/244068-
dc.description.abstractComputer experiments are widely used to evaluate the performance and reliability of engineering systems with the lowest possible time and cost. Sometimes, a high-fidelity model is required to ensure predictive accuracy; this becomes computationally intensive when many computational analyses are required (for example, inverse analysis or uncertainty analysis). In this context, a surrogate model can play a valuable role in addressing computational issues. Surrogate models are fast approximations of high-fidelity models. One efficient way for surrogate modeling is the sequential sampling (SS) method. The SS method sequentially adds samples to refine the surrogate model. This paper proposes a multiple-update-infill sampling method using a minimum energy design to improve the global quality of the surrogate model. The minimum energy design was recently developed for global optimization to find multiple optima. The proposed method was evaluated with other multiple-update-infill sampling methods in terms of convergence, accuracy, sampling efficiency, and computational cost.-
dc.languageEnglish-
dc.publisherMDPI-
dc.subjectCOMPUTER EXPERIMENTS-
dc.subjectGLOBAL OPTIMIZATION-
dc.subjectLATIN HYPERCUBES-
dc.subjectPREDICTION-
dc.subjectSURFACES-
dc.subjectCRITERIA-
dc.titleThe Multiple-Update-Infill Sampling Method Using Minimum Energy Design for Sequential Surrogate Modeling-
dc.typeArticle-
dc.identifier.wosid000434996400008-
dc.identifier.scopusid2-s2.0-85044384930-
dc.type.rimsART-
dc.citation.volume8-
dc.citation.issue4-
dc.citation.publicationnameAPPLIED SCIENCES-BASEL-
dc.identifier.doi10.3390/app8040481-
dc.contributor.localauthorJung, Hyung-Jo-
dc.contributor.nonIdAuthorKim, Sehoon-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcomputer experiments-
dc.subject.keywordAuthormultiple-update-infill sampling-
dc.subject.keywordAuthorminimum energy design-
dc.subject.keywordAuthorkriging model-
dc.subject.keywordAuthorglobal surrogate modeling-
dc.subject.keywordAuthorcomputer experiments-
dc.subject.keywordAuthormultiple-update-infill sampling-
dc.subject.keywordAuthorminimum energy design-
dc.subject.keywordAuthorkriging model-
dc.subject.keywordAuthorglobal surrogate modeling-
dc.subject.keywordPlusCOMPUTER EXPERIMENTS-
dc.subject.keywordPlusGLOBAL OPTIMIZATION-
dc.subject.keywordPlusLATIN HYPERCUBES-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusCRITERIA-
dc.subject.keywordPlusCOMPUTER EXPERIMENTS-
dc.subject.keywordPlusGLOBAL OPTIMIZATION-
dc.subject.keywordPlusLATIN HYPERCUBES-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusCRITERIA-
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0