Atomic visualization of a non-equilibrium sodiation pathway in copper sulfide

Cited 68 time in webofscience Cited 0 time in scopus
  • Hit : 654
  • Download : 253
DC FieldValueLanguage
dc.contributor.authorPark, Jae Yeolko
dc.contributor.authorKim, Sung Jooko
dc.contributor.authorChang, Joon Hako
dc.contributor.authorSeo, Hyeon Kookko
dc.contributor.authorLee, Jeong Yongko
dc.contributor.authorYuk, Jong Minko
dc.date.accessioned2018-03-23T00:14:09Z-
dc.date.available2018-03-23T00:14:09Z-
dc.date.created2018-03-20-
dc.date.created2018-03-20-
dc.date.created2018-03-20-
dc.date.issued2018-03-
dc.identifier.citationNATURE COMMUNICATIONS, v.9-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/240918-
dc.description.abstractSodium ion batteries have been considered a promising alternative to lithium ion batteries for large-scale energy storage owing to their low cost and high natural abundance. However, the commercialization of this device is hindered by the lack of suitable anodes with an optimized morphology that ensure high capacity and cycling stability of a battery. Here, we not only demonstrate that copper sulfide nanoplates exhibit close-to-theoretical capacity (similar to 560 mAh g(-1)) and long-term cyclability, but also reveal that their sodiation follows a non-equilibrium reaction route, which involves successive crystallographic tuning. By employing in situ transmission electron microscopy, we examine the atomic structures of four distinct sodiation phases of copper sulfide nanoplates including a metastable phase and discover that the discharge profile of copper sulfide directly reflects the observed phase evolutions. Our work provides detailed insight into the sodiation process of the high-performance intercalation-conversion anode material.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectTRANSMISSION ELECTRON-MICROSCOPY-
dc.subjectETHER-BASED ELECTROLYTE-
dc.subjectREDUCED GRAPHENE OXIDE-
dc.subjectION BATTERIES-
dc.subjectLITHIATION-
dc.subjectNA-
dc.subjectLITHIUM-
dc.subjectLI-
dc.subjectDIFFUSION-
dc.subjectFEPO4-
dc.titleAtomic visualization of a non-equilibrium sodiation pathway in copper sulfide-
dc.typeArticle-
dc.identifier.wosid000426469900024-
dc.identifier.scopusid2-s2.0-85042798792-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-018-03322-9-
dc.contributor.localauthorLee, Jeong Yong-
dc.contributor.localauthorYuk, Jong Min-
dc.contributor.nonIdAuthorKim, Sung Joo-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusTRANSMISSION ELECTRON-MICROSCOPY-
dc.subject.keywordPlusETHER-BASED ELECTROLYTE-
dc.subject.keywordPlusREDUCED GRAPHENE OXIDE-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusLITHIATION-
dc.subject.keywordPlusNA-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusFEPO4-
dc.subject.keywordPlusTRANSMISSION ELECTRON-MICROSCOPY-
dc.subject.keywordPlusETHER-BASED ELECTROLYTE-
dc.subject.keywordPlusREDUCED GRAPHENE OXIDE-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusLITHIATION-
dc.subject.keywordPlusNA-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusFEPO4-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 68 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0