In-plane channel-structured catalyst layer for polymer electrolyte membrane fuel cells

Cited 17 time in webofscience Cited 0 time in scopus
  • Hit : 278
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Dong-Hyunko
dc.contributor.authorJo, Wonheeko
dc.contributor.authorYuk, Seongminko
dc.contributor.authorChoi, Jaehoko
dc.contributor.authorChoi, Sungyuko
dc.contributor.authorDoo, gisuko
dc.contributor.authorLee, Dong-Wookko
dc.contributor.authorKim, Hee-Takko
dc.date.accessioned2018-03-21T02:23:43Z-
dc.date.available2018-03-21T02:23:43Z-
dc.date.created2018-02-28-
dc.date.created2018-02-28-
dc.date.issued2018-01-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, v.10, no.5, pp.4682 - 4688-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/10203/240635-
dc.description.abstractIn this study, we present a novel catalyst layer (CL) with in-plane flow channels to enhance the mass transports in polymer electrolyte membrane fuel cells. The CL with in-plane channels on its surface is fabricated by coating a CL slurry onto a surface-treated substrate with the inverse line pattern and transferring the dried CL from the substrate to a membrane. The membrane electrode assembly with the in-plane channel-patterned CL has superior power performances in high current densities compared with an unpatterned, flat CL, demonstrating a significant enhancement of the mass-transport property by the in-plane channels carved in the CL. The performance gain is more pronounced when the channel direction is perpendicular to the flow field direction, indicating that the in-plane channels increase the utilization of the CL under the rib area. An oxygen-transport resistance analysis shows that both molecular and Knudsen diffusion can be facilitated with the introduction of the in-plane channels. The direct CL patterning technique provides a platform for the fabrication of advanced CL structures with a high structural fidelity and design flexibility and a rational guideline for designing high-performance CLs.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectOXYGEN REDUCTION REACTION-
dc.subjectINHOMOGENEOUS COMPRESSION-
dc.subjectSOFT LITHOGRAPHY-
dc.subjectCURRENT-DENSITY-
dc.subjectPOWER-SYSTEM-
dc.subjectPEMFC-
dc.subjectELECTROCATALYSTS-
dc.subjectPERFORMANCE-
dc.subjectRESISTANCE-
dc.subjectOPERATION-
dc.titleIn-plane channel-structured catalyst layer for polymer electrolyte membrane fuel cells-
dc.typeArticle-
dc.identifier.wosid000424851600034-
dc.identifier.scopusid2-s2.0-85041793604-
dc.type.rimsART-
dc.citation.volume10-
dc.citation.issue5-
dc.citation.beginningpage4682-
dc.citation.endingpage4688-
dc.citation.publicationnameACS APPLIED MATERIALS & INTERFACES-
dc.identifier.doi10.1021/acsami.7b16433-
dc.contributor.localauthorKim, Hee-Tak-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorpolymer electrolyte membrane fuel cell-
dc.subject.keywordAuthorcatalyst layer-
dc.subject.keywordAuthorin-plane channel-
dc.subject.keywordAuthorsurface pattern-
dc.subject.keywordAuthormass transport-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusINHOMOGENEOUS COMPRESSION-
dc.subject.keywordPlusSOFT LITHOGRAPHY-
dc.subject.keywordPlusCURRENT-DENSITY-
dc.subject.keywordPlusPOWER-SYSTEM-
dc.subject.keywordPlusPEMFC-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusOPERATION-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0