Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol-gel process

Cited 141 time in webofscience Cited 0 time in scopus
  • Hit : 1059
  • Download : 286
DC FieldValueLanguage
dc.contributor.authorMo, CBko
dc.contributor.authorCha, SIko
dc.contributor.authorKim, KTko
dc.contributor.authorLee, KHko
dc.contributor.authorHong, Soon-Hyungko
dc.date.accessioned2007-12-11T06:44:30Z-
dc.date.available2007-12-11T06:44:30Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2005-03-
dc.identifier.citationMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, v.395, pp.124 - 128-
dc.identifier.issn0921-5093-
dc.identifier.urihttp://hdl.handle.net/10203/2405-
dc.description.abstractCarbon nanotube reinforced alumina matrix nanocomposite was fabricated by sol-gel process and followed by spark plasma sintering process. Homogeneous distribution of carbon nanotubes within alumina matrix can be obtained by mixing the carbon nanotubes with alumina sol and followed by condensation into gel. The mixed gel, consisting of alumina and carbon nanotubes, was dried and calcinated into carbon nanotube/alumina composite powders. The composite powders were spark plasma sintered into carbon nanotube reinforced alumina matrix nanocomposite. The hardness of carbon nanotube reinforced alumina matrix nanocomposite was enhanced due to an enhanced load sharing of homogeneously distributed carbon nanotubes. At the same time, the fracture toughness of carbon nanotube reinforced alumina matrix nanocomposite was enhanced due to a bridging effect of carbon nanotubes during crack propagation. (c) 2004 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherELSEVIER SCIENCE SA-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectMICROSTRUCTURE-
dc.subjectCONDUCTIVITY-
dc.subjectCOMPOSITES-
dc.titleFabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol-gel process-
dc.typeArticle-
dc.identifier.wosid000228069100016-
dc.identifier.scopusid2-s2.0-14744289721-
dc.type.rimsART-
dc.citation.volume395-
dc.citation.beginningpage124-
dc.citation.endingpage128-
dc.citation.publicationnameMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.identifier.doi10.1016/j.msea.2004.12.031-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorHong, Soon-Hyung-
dc.contributor.nonIdAuthorMo, CB-
dc.contributor.nonIdAuthorCha, SI-
dc.contributor.nonIdAuthorKim, KT-
dc.contributor.nonIdAuthorLee, KH-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcarbon nanotube-
dc.subject.keywordAuthoralumina-
dc.subject.keywordAuthornanocomposite-
dc.subject.keywordAuthorsol-gel process-
dc.subject.keywordAuthorspark plasma sintering-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusCOMPOSITES-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 141 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0