Kinetic Role of Carbon in Solid-State Synthesis of Zirconium Diboride using Nanolaminates: Nanocalorimetry Experiments and First-Principles Calculations

Cited 13 time in webofscience Cited 0 time in scopus
  • Hit : 432
  • Download : 0
Reactive nanolaminates afford a promising route for the low-temperature synthesis of zirconium diboride, an ultrahigh-temperature ceramic with metallic properties. Although the addition of carbon is known to facilitate sintering of ZrB2, its effect on the kinetics of the formation reaction has not been elucidated. We have employed a combined approach of nanocalorimetry and first-principles theoretical studies to investigate the kinetic role of carbon in the synthesis of ZrB2 using B4C/Zr reactive nanolaminates. Structural characterization of the laminates by XRD and TEM reveal that the reaction proceeds via interdiffusion of the B4C and Zr layers, which produces an amorphous Zr3B4C alloy. This amorphous alloy then crystallizes to form a supersaturated ZrB2(C) compound. A kinetic analysis shows that carbon lowers the energy barriers for both interdiffusion and crystallization by more than 20%. Energetic calculations based on first-principles modeling suggest that the reduction of the diffusion barrier may be attributed to the stronger bonding between Zr and C as compared to the bonding between Zr and B.
Publisher
AMER CHEMICAL SOC
Issue Date
2015-12
Language
English
Article Type
Article
Keywords

DIFFERENTIAL SCANNING CALORIMETRY; SHARP CONCENTRATION GRADIENTS; BULK METALLIC GLASSES; GROUP-III NITRIDES; BORON-CARBIDE; AB-INITIO; HCP-ZR; COMPOSITES; AMORPHIZATION; NUCLEATION

Citation

NANO LETTERS, v.15, no.12, pp.8266 - 8270

ISSN
1530-6984
DOI
10.1021/acs.nanolett.5b03829
URI
http://hdl.handle.net/10203/240178
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0