Development of Self-Stabilizing Manipulator Inspired by the Musculoskeletal System Using the Lyapunov Method

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 422
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChang, Handdeutko
dc.contributor.authorKim, Sangjoon Jonathanko
dc.contributor.authorKim, Jungko
dc.date.accessioned2018-01-30T04:19:13Z-
dc.date.available2018-01-30T04:19:13Z-
dc.date.created2017-12-15-
dc.date.created2017-12-15-
dc.date.created2017-12-15-
dc.date.issued2017-12-
dc.identifier.citationIEEE TRANSACTIONS ON ROBOTICS, v.33, no.6, pp.1425 - 1437-
dc.identifier.issn1552-3098-
dc.identifier.urihttp://hdl.handle.net/10203/238807-
dc.description.abstractThe stabilization of man-made dynamic systems has been achieved by sensor-based state feedback control with high computational bandwidth, fast signal transmission speed, and stiff joints. In contrast, many biological systems can achieve similar or superior stable behavior with low computational bandwidth, slow signal transmission speed via the nervous system, and flexible joints. The concept of self-stabilization has recently been proposed and widely investigated to explain this phenomenon. Self-stabilization is defined as the ability to restore its original state after a disturbance without any feedback control. In this paper, the stabilizing function of a musculoskeletal system for arbitrary motion in the vertical plane is analytically investigated using Lyapunov stability criteria. Based on this investigation, the method of designing a new actuator that can assign a self-stabilizing function to a robotic arm is introduced and a self-stabilizing manipulator is physically realized. As a result, a theoretically predicted self-stabilizing function is experimentally verified and explains why a biological musculoskeletal system can be stabilized with feedforward control.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleDevelopment of Self-Stabilizing Manipulator Inspired by the Musculoskeletal System Using the Lyapunov Method-
dc.typeArticle-
dc.identifier.wosid000417841500011-
dc.identifier.scopusid2-s2.0-85029171771-
dc.type.rimsART-
dc.citation.volume33-
dc.citation.issue6-
dc.citation.beginningpage1425-
dc.citation.endingpage1437-
dc.citation.publicationnameIEEE TRANSACTIONS ON ROBOTICS-
dc.identifier.doi10.1109/TRO.2017.2723627-
dc.contributor.localauthorKim, Jung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorLyapunov stability criteria-
dc.subject.keywordAuthormusculoskeletal system-
dc.subject.keywordAuthornonautonomous system-
dc.subject.keywordAuthorself-stabilization-
dc.subject.keywordPlusANKLE MECHANICAL IMPEDANCE-
dc.subject.keywordPlusMULTIJOINT MOVEMENT-
dc.subject.keywordPlusREACHING MOVEMENTS-
dc.subject.keywordPlusARM STIFFNESS-
dc.subject.keywordPlusFEEDBACK-
dc.subject.keywordPlusMUSCLES-
dc.subject.keywordPlusVELOCITY-
dc.subject.keywordPlusMODEL-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0