MOF derived ZnCo2O4 porous hollow spheres functionalized with Ag nanoparticles for a long-ycle and high-capacity lithium ion battery anode

Cited 71 time in webofscience Cited 0 time in scopus
  • Hit : 275
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKoo, Won-Taeko
dc.contributor.authorJang, Hye-Yeonko
dc.contributor.authorKim, Chanhoonko
dc.contributor.authorJung, Ji-Wonko
dc.contributor.authorCheong, Jun Youngko
dc.contributor.authorKim, Il-Dooko
dc.date.accessioned2018-01-30T02:40:35Z-
dc.date.available2018-01-30T02:40:35Z-
dc.date.created2017-11-28-
dc.date.created2017-11-28-
dc.date.issued2017-11-
dc.identifier.citationJOURNAL OF MATERIALS CHEMISTRY A, v.5, no.43, pp.22717 - 22725-
dc.identifier.issn2050-7488-
dc.identifier.urihttp://hdl.handle.net/10203/238171-
dc.description.abstractHuge volume expansion during discharge is always a critical problem of high capacity conversion anodes for next generation lithium-ion (Li-ion) batteries. Although extensive efforts have been devoted to controlling the volume expansion using nanostructuring and surface engineering till now, more simple and facile approaches have to be considered due to the complicated and inefficient synthetic methods. Here, we report a straightforward synthesis of Ag coated ZnCo2O4 porous hollow spheres (ZnCo2O4@Ag HSs): (i) immobilization of metal-organic frameworks (MOFs) including Zn and Co metal nodes onto polystyrene sphere templates, (ii) calcination (similar to 450 degrees C) for the removal of core polystyrene sphere templates and oxidation of MOFs to produce a mesoporous ZnCo2O4 HSs, and (iii) a subsequent Ag-mirror reaction for 10 min, resulting in the formation of ZnCo2O4@Ag HSs. This porous hollow morphology not only effectively relieves the strain stemming from the volume expansion of transition metals, but also facilitates the efficient electron transport for Li+ diffusion by shortening the Li-ion diffusion path during a lithiation/delithiation process. Moreover, uniformly decorated Ag nanoparticles are beneficial to the formation of a stable solid electrolyte interface (SEI) layer as well as an increased electrical conductivity of ZnCo2O4. The MOF derived porous ZnCo2O4@Ag HSs exhibited remarkably stable cycling performance (a capacity value of 616 mA h g(-1) after 900 cycles at a current density of 1 A g(-1)) and an excellent capacity retention of 80% at a very high current density of 20.0 A g(-1).-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectMETAL-ORGANIC FRAMEWORKS-
dc.subjectHIGH-PERFORMANCE ANODE-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectFLUOROETHYLENE CARBONATE-
dc.subjectMICROSPHERES-
dc.subjectSTORAGE-
dc.subjectTEMPLATE-
dc.subjectSUPERCAPACITORS-
dc.subjectELECTRODES-
dc.subjectCONVERSION-
dc.titleMOF derived ZnCo2O4 porous hollow spheres functionalized with Ag nanoparticles for a long-ycle and high-capacity lithium ion battery anode-
dc.typeArticle-
dc.identifier.wosid000414605900033-
dc.identifier.scopusid2-s2.0-85033384329-
dc.type.rimsART-
dc.citation.volume5-
dc.citation.issue43-
dc.citation.beginningpage22717-
dc.citation.endingpage22725-
dc.citation.publicationnameJOURNAL OF MATERIALS CHEMISTRY A-
dc.identifier.doi10.1039/c7ta07573a-
dc.contributor.localauthorKim, Il-Doo-
dc.contributor.nonIdAuthorJang, Hye-Yeon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORKS-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusFLUOROETHYLENE CARBONATE-
dc.subject.keywordPlusMICROSPHERES-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusTEMPLATE-
dc.subject.keywordPlusSUPERCAPACITORS-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusCONVERSION-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 71 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0