Chemical modification of carbon nanotubes and preparation of polystyrene/carbon nanotubes composites

Cited 46 time in webofscience Cited 17 time in scopus
  • Hit : 288
  • Download : 3
Single-walled carbon nanotubes (SWNTs) have been chemically modified through the formation of carboxylic acid functionalities or by grafting octadecylamine and polystyrene onto them. We purified SWNTs with nitric acid to remove some remaining catalysts and amorphous carbon materials. After purification, we broke the carbon nanotubes and shortened their lengths by using a 3:1 mixture of concentrated sulfuric acid and nitric acid. During these purification and Cutting processes, carboxylic acid units formed at the open ends of the SWNTs. Octadecylamine and amino-terminated polystyrene were grafted onto the cut SWNTs by condensation reactions between the amine and carboxylic acid units. The Cut SWNTs did not disperse in organic solvents, but the octadecylamine-grafted and polystyrene-grafted SWNTs dispersed well in dichloromethane and aromatic solvents (e.g., benzene, toluene). Composites were prepared by mixing polystyrene with the octadecylamine-grafted or poly styrene-grafted SWNTs. Each composite had a higher dynamic storage modulus than that of a pristine polystyrene. The composites exhibited enhanced storage moduli, complex viscosities, and unusual non-terminal behavior when compared with a monodisperse polystyrene matrix because of the good dispersion of carbon nanotubes in the polystyrene matrix.
Publisher
POLYMER SOC KOREA
Issue Date
2004-08
Language
English
Article Type
Article
Keywords

NANOCOMPOSITES; DISSOLUTION; STRENGTH

Citation

MACROMOLECULAR RESEARCH, v.12, no.4, pp.384 - 390

ISSN
1598-5032
DOI
10.1007/BF03218416
URI
http://hdl.handle.net/10203/23802
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 46 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0