Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 744
  • Download : 278
DC FieldValueLanguage
dc.contributor.authorSailamul, Pachayako
dc.contributor.authorJang, Jaesonko
dc.contributor.authorPaik, Se-Bumko
dc.date.accessioned2017-12-19T01:22:05Z-
dc.date.available2017-12-19T01:22:05Z-
dc.date.created2017-11-27-
dc.date.created2017-11-27-
dc.date.created2017-11-27-
dc.date.issued2017-12-
dc.identifier.citationJOURNAL OF COMPUTATIONAL NEUROSCIENCE, v.43, no.3, pp.189 - 202-
dc.identifier.issn0929-5313-
dc.identifier.urihttp://hdl.handle.net/10203/228508-
dc.description.abstractCorrelated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.titleSynaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks-
dc.typeArticle-
dc.identifier.wosid000415693700002-
dc.identifier.scopusid2-s2.0-85029121948-
dc.type.rimsART-
dc.citation.volume43-
dc.citation.issue3-
dc.citation.beginningpage189-
dc.citation.endingpage202-
dc.citation.publicationnameJOURNAL OF COMPUTATIONAL NEUROSCIENCE-
dc.identifier.doi10.1007/s10827-017-0657-5-
dc.contributor.localauthorPaik, Se-Bum-
dc.contributor.nonIdAuthorSailamul, Pachaya-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSpike transfer function-
dc.subject.keywordAuthorFeedforward networks-
dc.subject.keywordAuthorSynaptic convergence-
dc.subject.keywordAuthorSpike synchrony-
dc.subject.keywordAuthorNeural oscillation-
dc.subject.keywordPlusPRIMARY VISUAL-CORTEX-
dc.subject.keywordPlusBRAIN OSCILLATIONS-
dc.subject.keywordPlusRECEPTIVE-FIELDS-
dc.subject.keywordPlusTOP-DOWN-
dc.subject.keywordPlusNEURONAL SYNCHRONIZATION-
dc.subject.keywordPlusCOMPONENT-PLACEMENT-
dc.subject.keywordPlusBAND OSCILLATIONS-
dc.subject.keywordPlusATTENTION-
dc.subject.keywordPlusFEEDBACK-
dc.subject.keywordPlusDYNAMICS-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0