Hybrid content caching for low end-to-end latency in cloud-based wireless networks

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 218
  • Download : 0
In this paper, we consider the content caching design without requiring historical content access information or content popularity profiles in a hierarchical cellular network architecture. Our design aims to dynamically select caching locations for different contents where caching locations can be content servers, cloud units (CUs), and base stations (BSs). Our design objective is to support as high content request rates as possible while maintaining the finite service time. To tackle this design problem, we employ the Lyapunov optimization method where the caching algorithm is developed by minimizing the Lyapunov drift of a quadratic Lyapunov function of virtual queue backlogs. This solution approach requires to solve a max-weight problem, which is an NP-hard and difficult problem to solve due to the coupling between CU caching and BS caching decisions. By exploiting the submodularity of the objective function, we propose a hybrid caching algorithm which achieves the constant approximation ratio to the optimal performance. Trace-driven simulation results demonstrate that the proposed joint CU/BS caching algorithm achieves almost the same performance with the exhaustive search and outperforms the independent caching algorithm and heuristic joint caching algorithms in terms of average end-to-end latency and backhaul load reduction ratio.
Publisher
Institute of Electrical and Electronics Engineers Inc.
Issue Date
2017-05-23
Language
English
Citation

2017 IEEE International Conference on Communications, ICC 2017

DOI
10.1109/ICC.2017.7996631
URI
http://hdl.handle.net/10203/227380
Appears in Collection
AI-Conference Papers(학술대회논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0