Constrained Bayesian Reinforcement Learning via Approximate Linear Programming

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 253
  • Download : 0
In this paper, we highlight our recent work~\cite{Lee2017} considering the safe learning scenario where we need to restrict the exploratory behavior of a reinforcement learning agent. Specifically, we treat the problem as a form of Bayesian reinforcement learning (BRL) in an environment that is modeled as a constrained MDP (CMDP) where the cost function penalizes undesirable situations. We propose a model-based BRL algorithm for such an environment, eliciting risk-sensitive exploration in a principled way. Our algorithm efficiently solves the constrained BRL problem by approximate linear programming, and generates a finite state controller in an off-line manner. We provide theoretical guarantees and demonstrate empirically that our approach outperforms the state of the art.
Publisher
Scaling-Up Reinforcement Learning Workshop at ECML PKDD 2017
Issue Date
2017-09-18
Language
English
Citation

Scaling-Up Reinforcement Learning Workshop at ECML PKDD 2017

URI
http://hdl.handle.net/10203/227104
Appears in Collection
AI-Conference Papers(학술대회논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0