Engineering Reaction Kinetics by Tailoring the Metal Tips of Metal Semiconductor Nanodumbbells

Cited 25 time in webofscience Cited 0 time in scopus
  • Hit : 632
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Ji Yongko
dc.contributor.authorJeong, Da-Hyiko
dc.contributor.authorLee, Seon Jooko
dc.contributor.authorKang, Dong-Guko
dc.contributor.authorKim, Sang-Kyuko
dc.contributor.authorNarn, Ki Minko
dc.contributor.authorSong, Hyunjoonko
dc.date.accessioned2017-10-23T01:55:59Z-
dc.date.available2017-10-23T01:55:59Z-
dc.date.created2017-10-10-
dc.date.created2017-10-10-
dc.date.issued2017-09-
dc.identifier.citationNANO LETTERS, v.17, no.9, pp.5688 - 5694-
dc.identifier.issn1530-6984-
dc.identifier.urihttp://hdl.handle.net/10203/226413-
dc.description.abstractSemiconductor-metal hybrid nanostructures are one of the best model catalysts for understanding photocatalytic hydrogen generation. To investigate the optimal structure of metal cocatalysts, metal-CdSe-metal nanodumbbells were synthesized with three distinct sets of metal tips, Pt-CdSe-Pt, Au-CdSe-Au, and Au-CdSe-Pt. Photoelectrochemical responses and transient absorption spectra showed that the competition between the charge recombination at the metal CdSe interface and the water reduction on the metal surface is a detrimental factor for the apparent hydrogen evolution rate. For instance, a large recombination rate (k(rec)) at the Pt CdSe interface limits the quantum yield of hydrogen generation despite a superior water reduction rate (k(WR)) on the Pt surface. To suppress the recombination process, Pt was selectively deposited onto the Au tips of Au-CdSe-Au nanodumbbells in which the krec was diminished at the Au-CdSe interface, and the large k(WR) was maintained on the Pt surface. As a result, the optimal structure of the Pt -coated Au-CdSe-Au nanodumbbells reached a quantum yield of 4.84%. These findings successfully demonstrate that the rational design of a metal cocatalyst and metal-semiconductor interface can additionally enhance the catalytic performance of the photochemical hydrogen generation reactions.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectPHOTOCATALYTIC H-2 GENERATION-
dc.subjectFERMI-LEVEL EQUILIBRATION-
dc.subjectDECORATED CDS NANORODS-
dc.subjectHYDROGEN-PRODUCTION-
dc.subjectELECTRON-TRANSFER-
dc.subjectQUANTUM RODS-
dc.subjectHETEROSTRUCTURES-
dc.subjectWATER-
dc.subjectNANOPARTICLES-
dc.subjectNANOCRYSTALS-
dc.titleEngineering Reaction Kinetics by Tailoring the Metal Tips of Metal Semiconductor Nanodumbbells-
dc.typeArticle-
dc.identifier.wosid000411043500075-
dc.identifier.scopusid2-s2.0-85029524583-
dc.type.rimsART-
dc.citation.volume17-
dc.citation.issue9-
dc.citation.beginningpage5688-
dc.citation.endingpage5694-
dc.citation.publicationnameNANO LETTERS-
dc.identifier.doi10.1021/acs.nanolett.7b02582-
dc.contributor.localauthorKim, Sang-Kyu-
dc.contributor.localauthorSong, Hyunjoon-
dc.contributor.nonIdAuthorLee, Seon Joo-
dc.contributor.nonIdAuthorKang, Dong-Gu-
dc.contributor.nonIdAuthorNarn, Ki Min-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorNanoparticles-
dc.subject.keywordAuthorphotocatalyst-
dc.subject.keywordAuthorhydrogen generation-
dc.subject.keywordAuthormetal cocatalyst-
dc.subject.keywordAuthorcharge recombination-
dc.subject.keywordPlusPHOTOCATALYTIC H-2 GENERATION-
dc.subject.keywordPlusFERMI-LEVEL EQUILIBRATION-
dc.subject.keywordPlusDECORATED CDS NANORODS-
dc.subject.keywordPlusHYDROGEN-PRODUCTION-
dc.subject.keywordPlusELECTRON-TRANSFER-
dc.subject.keywordPlusQUANTUM RODS-
dc.subject.keywordPlusHETEROSTRUCTURES-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOCRYSTALS-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0