Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcilloma

Cited 122 time in webofscience Cited 0 time in scopus
  • Hit : 795
  • Download : 0
Developments of EGFR-TKI and immunotherapy targeting the PD1/13D-L1 pathway are considered most important medical breakthroughs in lung cancer treatment. Nowadays, 3rd generation EGFR TKI is widely used for T790M positive 1st and 2nd EGFR-TKI resistant lung cancer patients. Immunotherapy is powerful option for lung cancer patients without drug targets and chemotherapy resistant patients. It also has changed the concept of conventional anti-cancer therapy in the point of regulating tumor microenvironment. There are many studies linking these two important pathways. Recent studies demonstrated that PD-L1 expression is significantly correlated to the mutation status of EGFR, and activation of EGFR signaling can also induce the expression of PD-L1. However, the real linker between PD-Li and EGFR signaling remains to be revealed. Our previous study revealed that the Hippo pathway effector YAP confers EGFR-TKI resistance in lung adenocarcinoma, and inhibition of YAP restores sensitivity to EGFR-TKIs. Thus, we examined whether PD-L1 is relevant, in terms of conferring EGFR-TKI resistance and whether YAP directly regulates the expression of PD-L1 in this context. First, we compared the expression levels of PD-L1 and YAP between EGFR-TKI-resistant PC9 cells and the parental PC9 adenocarcinoma cells. The expression levels of both YAP and PD-L1 were markedly higher in the EGFR-TKI-resistant cells compared to the parental cells, suggesting differential expression pattern between two cell types. YAP knockdown significantly decreased the expression of PD-L1 in the EGFR-TKI-resistant cells, while YAP overexpression increased the expression of PD-Li in the parental PC9 cells. Then, our results revealed that YAP regulates the transcription of PD-L1, and the YAP/TEAD complex binds to the PD-L1 promoter. Surprisingly, knockdown of PDv was sufficient to decrease cell proliferation and wound healing in the EGFR-TKI-resistant PC9 cells. These data suggest a PD1-independent oncogenic function of PD-L1. The Hippo effector YAP plays a crucial role in linking the PD-L1 and EGFR-TKI resistance by directly regulating the expression of PD-L1 in lung cancer. Targeting PD-L1 directly or via YAP could provide an effective therapeutic strategy for EGFR-TKI-resistant lung adenocarcinoma. (C) 2017 Elsevier Inc. All rights reserved.
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Issue Date
2017-09
Language
English
Article Type
Article
Keywords

SIGNALING PATHWAY; CANCER; SURVIVAL; TARGET; ROLES; NSCLC; CELLS

Citation

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, v.491, no.2, pp.493 - 499

ISSN
0006-291X
DOI
10.1016/j.bbrc.2017.07.007
URI
http://hdl.handle.net/10203/225986
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 122 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0