Electrochemical Hydrodynamics Modeling Approach for a Copper Electrowinning Cell

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 678
  • Download : 0
This study demonstrates a simulation based on a full coupling of electrochemical kinetics with the 3-dimensional transport of ionic species in a flowing electrolyte through a simplified channel cell of copper electrowinning. The dependences of ionic electro-transport on the velocity of a stationary electrolyte flow were studied using a coupling approach of the electrochemical reaction model. The present model was implemented in a commercially available computational fluid dynamics (CFD) platform, Ansys-CFX, using its customization ability through user-defined functions. The main parameters characterizing the effect of the turbulent flow of an electrolyte between two planar electrodes were demonstrated by means of a CFD-based multiphysics simulation approach. Simulation was carried out for the case of the mass transport controlled copper electrowinning characteristics in a stream of acid sulfate electrolyte. This approach was taken into account in the concentration profile at the electrode surface, to represent the variation of the convective diffusion limited current density as a function of the flow characteristics and of the applied current density. It was able to predict a conventional current-voltage relation in addition to details of the electrolyte fluid dynamics and electrochemical variable, such as the flow field, species concentrations, potential, and current distributions throughout the galvanostatic cell.
Publisher
ESG
Issue Date
2013-11
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, v.8, no.11, pp.12333 - 12347

ISSN
1452-3981
URI
http://hdl.handle.net/10203/225871
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0