Elaborate Manipulation for Sub-10 nm Hollow Catalyst Sensitized Heterogeneous Oxide Nanofibers for Room Temperature Chemical Sensors

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 249
  • Download : 0
Room-temperature (RT) operation sensors are constantly in increasing demand because of their low power consumption, simple operation, and long lifetime. However, critical challenges such as low sensing performance, vulnerability under highly humid state, and poor recyclability hinder their commercialization. In this work, sub-10 nm hollow, bimetallic Pt-Ag nanoparticles (NPs) were successfully formed by galvanic replacement reaction in bioinspired hollow protein templates and sensitized on the multidimensional SnO2-WO3 heterojunction nanofibers (HNFs). Formation of hollow, bimetallic NPs resulted in the double-side catalytic effect, rendering both surface and inner side chemical reactions. Subsequently, SnO2-WO3 HNFs were synthesized by incorporating 2D WO3 nanosheets (NSs) with 0D SnO2 sphere by c-axis growth inhibition effect and fluid dynamics of liquid Sn during calcination. Hierarchically assembled HNFs effectively modulate surface depletion layer of 2D WO3 NSs by electron transfers from WO3 to SnO2 stemming from creation of heterojunction. Careful combination of bimetallic catalyst NPs with HNFs provided an extreme recyclability under exhaled breath (95 RH%) with, outstanding H2S sensitivity. Such sensing platform dearly distinguished between the breath of healthy people and simulated halitosis patients.
Publisher
AMER CHEMICAL SOC
Issue Date
2017-07
Language
English
Article Type
Article
Keywords

GALVANIC REPLACEMENT REACTIONS; SENSING PERFORMANCE; OPTICAL-PROPERTIES; CARBON NANOTUBES; GAS SENSORS; H2S; NANOPARTICLES; NANOCOMPOSITES; FABRICATION; AG

Citation

ACS APPLIED MATERIALS & INTERFACES, v.9, no.29, pp.24821 - 24829

ISSN
1944-8244
DOI
10.1021/acsami.7b02396
URI
http://hdl.handle.net/10203/225487
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0