Non-Uniform Fusion Tree Generation in a Dynamic Multi-Sensor System

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 720
  • Download : 403
This paper addresses the proposal that the number of processed air tracks of a two-tier fusion process can be increased by applying a balanced fusion tree which can balance tracks across local fusion nodes. Every fusion cycle, a fusion process combines duplicate tracks from multiple radars and creates a single integrated air picture (SIAP). The two-tier fusion process divides the fusion process into local and global. The results of the local fusion process, executed at local fusion nodes, are used in the global fusion process. This hierarchical structure can be modeled as a fusion tree: each radar, local fusion node, and the central server is a leaf, internode, and the root, respectively. This paper presents a non-uniform fusion tree generation (NU-FTG) algorithm based on clustering approach. In the NU-FTG, radars with higher scores get more chances to become local fusion nodes. The score of a radar is in proportion to the number of tracks of the radar and its neighbors. All radars execute the NU-FTG independently with the information of their neighbors. Any prior information, such as the appropriate number of local fusion nodes, predefined tree structure, or position of radars, is not required. The NU-FTG is evaluated in the OPNET (Optimized Network Engineering Tool), network simulator. Simulation results show that the NU-FTG performs better than existing clustering methods.
Publisher
MDPI AG
Issue Date
2017-05
Language
English
Article Type
Article
Keywords

WIRELESS SENSOR NETWORKS; ENERGY-EFFICIENT; ALGORITHMS

Citation

SENSORS, v.17, no.5

ISSN
1424-8220
DOI
10.3390/s17051020
URI
http://hdl.handle.net/10203/225171
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
000404553300081.pdf(1.75 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0