Carrier-phase-estimation algorithm featuring fast trackability for high-speed coherent WDM PON based on RSOA

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 503
  • Download : 0
There have been substantial efforts to implement high-speed (> 10 Gb/s) upstream transmission using reflective semiconductor optical amplifiers (RSOAs) in a coherent wavelength-division-multiplexed (WDM) passive optical network (PON). In such a network, it is necessary to estimate the carrier phase of upstream optical signal to retrieve the phasemodulated information created by RSOA. However, due to the severe waveform distortions caused by the limited modulation bandwidth of RSOA (typically less than 3 GHz), previously reported carrier phase estimation (CPE) algorithms cannot accurately estimate the carrier phase of high-speed quadrature phase-shift keying (QPSK) signal generated from the RSOA seeded by a distributed-feedback (DFB) laser. We propose a novel CPE method capable of tracking the carrier phase rapidly by using a small number of symbols (e.g., 15 symbols) even when the waveforms are severely distorted by the limited modulation bandwidth of RSOA. The proposed CPE method utilizes the linear relationship between the intensity modulation and phase modulation indices inherent in the semiconductor opto-electronic device. By using the proposed method, we demonstrate the transmission of 25.78-Gb/s QPSK signal in a 20km long loopback fiber link. In this experiment, a commercial DFB laser (linewidth: 3 MHz) is used as the seed light instead of an expensive narrow-linewidth laser. Also shown through the experiment is that the proposed CPE method is highly unsusceptible to variations of parameters required in the proposed method, such as the number of test phases, the accuracy of linewidth enhancement factor, and the accuracy of the normalized amplitude of DC component. (C) 2017 Optical Society of America
Publisher
OPTICAL SOC AMER
Issue Date
2017-06
Language
English
Article Type
Article
Citation

OPTICS EXPRESS, v.25, no.13, pp.14282 - 14289

ISSN
1094-4087
DOI
10.1364/OE.25.014282
URI
http://hdl.handle.net/10203/224868
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0