Configuration Guidance Framework for Molecular Dynamics Simulations in Virtualized Clusters

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 695
  • Download : 0
With the advancement of cloud computing, there has been a growing interest in exploiting demand-based cloud resources for parallel scientific applications. To satisfy different needs for computing resources, cloud providers provide many different types of virtual machines (VMs) with various numbers of computing cores and amounts of memory. The cost and execution time of a scientific application vary depending on the types of VMs, number of VMs, and current status of the cloud due to interference among VMs. However, currently, cloud users are solely responsible for selecting the most effective VM configuration for their needs, but often end up with sub-optimal selections. In this paper, using molecular dynamics simulations as a case study, we propose a framework to guide users to select the optimal VM configurations that satisfy their requirements for scientific parallel computing in virtualized clusters. For molecular dynamics computation on a cluster of VMs, the guidance framework uses artificial neural networks which are trained to predict its execution times for various inputs, VM configurations, and status of interference among VMs. Using our performance prediction mechanisms, the guidance framework helps users choose an optimal or near-optimal VM cluster configuration under cost and runtime constraints.
Publisher
IEEE COMPUTER SOC
Issue Date
2017-05
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON SERVICES COMPUTING, v.10, no.3, pp.366 - 380

ISSN
1939-1374
DOI
10.1109/TSC.2015.2477835
URI
http://hdl.handle.net/10203/224797
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0