Understanding gas adsorption in MOF-5/graphene oxide composite materials

Cited 26 time in webofscience Cited 0 time in scopus
  • Hit : 390
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLin, Li-Chiangko
dc.contributor.authorPaik, Dooamko
dc.contributor.authorKim, Jihanko
dc.date.accessioned2017-06-16T02:52:39Z-
dc.date.available2017-06-16T02:52:39Z-
dc.date.created2017-06-03-
dc.date.created2017-06-03-
dc.date.issued2017-05-
dc.identifier.citationPHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.19, no.18, pp.11639 - 11644-
dc.identifier.issn1463-9076-
dc.identifier.urihttp://hdl.handle.net/10203/223950-
dc.description.abstractMetal-organic framework (MOF) and graphene oxide (GO) composite materials (MOF/GO) have been regarded as promising for separation applications due to their synergistically enhanced adsorption properties. Molecular-level understandings of these materials, however, remain unknown to date. In this study, molecular simulations were used, for the first time, to model these composite materials. Specifically, the composite MOF-5/GO material was modeled as stacks of sandwich-like layers on top of one another, consistent with experimental observations inferred from XRD and the SEM images. Simulations indicate that CO2 and CH4 bind strongly in the MOF/GO interface region, resulting in synergistically enhanced adsorption properties. To exploit the interface region, we found that in simulating linear alkanes, larger guest molecules show substantially improved adsorption properties in composites compared to the parent MOF-5 structure, illustrating that the performance of adsorption in these molecules will benefit the most from the MOF/GO composites.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectMETAL-ORGANIC FRAMEWORK-
dc.subjectMOLECULAR-DYNAMICS SIMULATIONS-
dc.subjectCO2 CAPTURE-
dc.subjectFORCE-FIELD-
dc.subjectDESIGN-
dc.subjectCARBON-
dc.subjectFUNCTIONALITY-
dc.subjectENCAPSULATION-
dc.subjectAMMONIA-
dc.subjectSYSTEMS-
dc.titleUnderstanding gas adsorption in MOF-5/graphene oxide composite materials-
dc.typeArticle-
dc.identifier.wosid000401022300067-
dc.identifier.scopusid2-s2.0-85023631513-
dc.type.rimsART-
dc.citation.volume19-
dc.citation.issue18-
dc.citation.beginningpage11639-
dc.citation.endingpage11644-
dc.citation.publicationnamePHYSICAL CHEMISTRY CHEMICAL PHYSICS-
dc.identifier.doi10.1039/c7cp00066a-
dc.contributor.localauthorKim, Jihan-
dc.contributor.nonIdAuthorLin, Li-Chiang-
dc.contributor.nonIdAuthorPaik, Dooam-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORK-
dc.subject.keywordPlusMOLECULAR-DYNAMICS SIMULATIONS-
dc.subject.keywordPlusCO2 CAPTURE-
dc.subject.keywordPlusFORCE-FIELD-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusFUNCTIONALITY-
dc.subject.keywordPlusENCAPSULATION-
dc.subject.keywordPlusAMMONIA-
dc.subject.keywordPlusSYSTEMS-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 26 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0