Tunneling Effects in a Charge-Plasma Dopingless Transistor

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 402
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHur, Jaeko
dc.contributor.authorMoon, Dong-Ilko
dc.contributor.authorHan, Jin-Wooko
dc.contributor.authorKim, Gun-Heeko
dc.contributor.authorJeon, Chang-Hoonko
dc.contributor.authorChoi, Yang-Kyuko
dc.date.accessioned2017-03-30T09:17:28Z-
dc.date.available2017-03-30T09:17:28Z-
dc.date.created2017-03-29-
dc.date.created2017-03-29-
dc.date.created2017-03-29-
dc.date.issued2017-03-
dc.identifier.citationIEEE TRANSACTIONS ON NANOTECHNOLOGY, v.16, no.2, pp.315 - 320-
dc.identifier.issn1536-125X-
dc.identifier.urihttp://hdl.handle.net/10203/222694-
dc.description.abstractThe recently proposed device concept, the so-called charge-plasma (C-P) dopingless transistor (DLT), is revisited. The novel device, which utilizes the workfunction difference between the source/drain (S/D) metal and the substrate enclosing the S/D junction, does not demand external S/D chemical doping via ion implant. It shows excellent immunity against short-channel effects due to an extremely thin junction depth arisen from internal S/D electrical doping, which is the counter-part of the aforementioned chemical doping. For a deeper understanding of C-P devices, the tunneling effects must be considered because of the unavoidable presence of a Schottky barrier at the S/D contact interface. These tunneling effects were found to have a huge impact on current under an ON-and OFF-state. And they strongly depend on the spacer and contact length of the device. The device performance and the feasibility of the C-P DLT are also discussed, specifically, in terms of the Fermi level pinning.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectJUNCTIONLESS TRANSISTOR-
dc.subjectSCHOTTKY-
dc.subjectSOURCE/DRAIN-
dc.subjectPERFORMANCE-
dc.subjectMOSFETS-
dc.subjectCHANNEL-
dc.titleTunneling Effects in a Charge-Plasma Dopingless Transistor-
dc.typeArticle-
dc.identifier.wosid000396396300021-
dc.identifier.scopusid2-s2.0-85015664269-
dc.type.rimsART-
dc.citation.volume16-
dc.citation.issue2-
dc.citation.beginningpage315-
dc.citation.endingpage320-
dc.citation.publicationnameIEEE TRANSACTIONS ON NANOTECHNOLOGY-
dc.identifier.doi10.1109/TNANO.2017.2663659-
dc.contributor.localauthorChoi, Yang-Kyu-
dc.contributor.nonIdAuthorMoon, Dong-Il-
dc.contributor.nonIdAuthorHan, Jin-Woo-
dc.contributor.nonIdAuthorKim, Gun-Hee-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorBand-to-band tunneling (BBT)-
dc.subject.keywordAuthorcharge-plasma (C-P)-
dc.subject.keywordAuthordopingless transistor (DLT)-
dc.subject.keywordAuthorfermi level pinning (FLP)-
dc.subject.keywordAuthorgate-induced drain leakage (GIDL)-
dc.subject.keywordAuthorjunctionless transistor (JLT)-
dc.subject.keywordAuthormetal-induced gap states (MIGS)-
dc.subject.keywordAuthoruniversal schottky tunneling (UST)-
dc.subject.keywordPlusJUNCTIONLESS TRANSISTOR-
dc.subject.keywordPlusSCHOTTKY-
dc.subject.keywordPlusSOURCE/DRAIN-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusMOSFETS-
dc.subject.keywordPlusCHANNEL-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0