Switching of Photonic Crystal Lasers by Graphene

Cited 25 time in webofscience Cited 0 time in scopus
  • Hit : 662
  • Download : 0
Unique features of graphene have motivated the development of graphene-integrated photonic devices. In particular, the electrical tunability of graphene loss enables high-speed modulation of light and tuning of cavity resonances in graphene-integrated waveguides and cavities. However, efficient control of light emission such as lasing, using graphene, remains a challenge. In this work, we demonstrate on/off switching of single- and double-cavity photonic crystal lasers by electrical gating of a monolayer graphene sheet on top of photonic crystal cavities. The optical loss of graphene was controlled by varying the gate voltage V-g, with the ion gel atop the graphene sheet. First, the fundamental properties of graphene were investigated through the transmittance measurement and numerical simulations. Next, optically pumped lasing was demonstrated for a graphene-integrated single photonic crystal cavity at V-g below-0.6 V, exhibiting a low lasing threshold of -4801 mu W, whereas lasing was not observed at V-g above -0.6 V owing to the intrinsic optical loss of graphene. Changing quality factor of the graphene-integrated photonic crystal cavity enables or disables the lasing operation. Moreover, in the double-cavity photonic crystal lasers with graphene, switching of individual cavities with separate graphene sheets was achieved, and these two lasing actions were controlled independently despite the close distance of -2.2 mu m between adjacent cavities. We believe that our simple and practical approach for switching in graphene-integrated active photonic devices will pave the way toward designing high-contrast and ultracompact photonic integrated circuits.
Publisher
AMER CHEMICAL SOC
Issue Date
2017-03
Language
English
Article Type
Article
Citation

NANO LETTERS, v.17, no.3, pp.1892 - 1898

ISSN
1530-6984
DOI
10.1021/acs.nanolett.6b05207
URI
http://hdl.handle.net/10203/222689
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0