Prospects of microbial cell factories developed through systems metabolic engineering

Cited 51 time in webofscience Cited 0 time in scopus
  • Hit : 254
  • Download : 474
DC FieldValueLanguage
dc.contributor.authorGustavsson, Martinko
dc.contributor.authorLee, Sang Yupko
dc.date.accessioned2016-11-30T08:41:48Z-
dc.date.available2016-11-30T08:41:48Z-
dc.date.created2016-11-16-
dc.date.created2016-11-16-
dc.date.created2016-11-16-
dc.date.created2016-11-16-
dc.date.created2016-11-16-
dc.date.created2016-11-16-
dc.date.created2016-11-16-
dc.date.created2016-11-16-
dc.date.issued2016-09-
dc.identifier.citationMICROBIAL BIOTECHNOLOGY, v.9, no.5, pp.610 - 617-
dc.identifier.issn1751-7907-
dc.identifier.urihttp://hdl.handle.net/10203/214279-
dc.description.abstractWhile academic-level studies on metabolic engineering of microorganisms for production of chemicals and fuels are ever growing, a significantly lower number of such production processes have reached commercial-scale. In this work, we review the challenges associated with moving from laboratory-scale demonstration of microbial chemical or fuel production to actual commercialization, focusing on key requirements on the production organism that need to be considered during the metabolic engineering process. Metabolic engineering strategies should take into account technoeconomic factors such as the choice of feedstock, the product yield, productivity and titre, and the cost effectiveness of midstream and downstream processes. Also, it is important to develop an industrial strain through metabolic engineering for pathway construction and flux optimization together with increasing tolerance to products and inhibitors present in the feedstock, and ensuring genetic stability and strain robustness under actual fermentation conditions.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleProspects of microbial cell factories developed through systems metabolic engineering-
dc.typeArticle-
dc.identifier.wosid000386999300012-
dc.identifier.scopusid2-s2.0-84983317316-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue5-
dc.citation.beginningpage610-
dc.citation.endingpage617-
dc.citation.publicationnameMICROBIAL BIOTECHNOLOGY-
dc.identifier.doi10.1111/1751-7915.12385-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorLee, Sang Yup-
dc.contributor.nonIdAuthorGustavsson, Martin-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusL-THREONINE PRODUCTION-
dc.subject.keywordPlusESCHERICHIA-COLI-
dc.subject.keywordPlusGENE-EXPRESSION-
dc.subject.keywordPlusFERMENTATION-
dc.subject.keywordPlusETHANOL-
dc.subject.keywordPlusSTRAINS-
dc.subject.keywordPlusTRANSPORTER-
dc.subject.keywordPlusSTRATEGIES-
dc.subject.keywordPlusTOLERANCE-
dc.subject.keywordPlusPATHWAYS-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 51 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0