Pyroshock Prediction of Ridge-Cut Explosive Bolts Using Hydrocodes

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 654
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Juhoko
dc.contributor.authorHwang, Dae-Hyunko
dc.contributor.authorJang, Jae-Kyeongko
dc.contributor.authorKim, Dong-Jinko
dc.contributor.authorLee, YeungJoko
dc.contributor.authorLee, Jung-Ryulko
dc.contributor.authorHan, Jae-Hungko
dc.date.accessioned2016-11-30T01:32:11Z-
dc.date.available2016-11-30T01:32:11Z-
dc.date.created2016-11-08-
dc.date.created2016-11-08-
dc.date.created2016-11-08-
dc.date.issued2016-09-
dc.identifier.citationSHOCK AND VIBRATION-
dc.identifier.issn1070-9622-
dc.identifier.urihttp://hdl.handle.net/10203/214150-
dc.description.abstractPyrotechnic release devices such as explosive bolts are prevalent for many applications due to their merits: high reliability, high power-to-weight ratio, reasonable cost, and more. However, pyroshock generated by an explosive event can cause failures in electric components. Although pyroshock propagations are relatively well understood through many numerical and experimental studies, the prediction of pyroshock generation is still a very difficult problem. This study proposes a numerical method for predicting the pyroshock of a ridge-cut explosive bolt using a commercial hydrocode (ANSYS AUTODYN). A numerical model is established by integrating fluid-structure interaction and complex material models for high explosives and metals, including high explosive detonation, shock wave transmission and propagation, and stress wave propagation. To verify the proposed numerical scheme, pyroshock measurement experiments of the ridge-cut explosive bolts with two types of surrounding structures are performed using laser Doppler vibrometers (LDVs). The numerical analysis results provide accurate prediction in both the time (acceleration) and frequency domains (maximax shock response spectra). In maximax shock response spectra, the peaks due to vibration modes of the structures are observed in both the experimental and numerical results. The numerical analysis also helps to identify the pyroshock generation source and the propagation routes-
dc.languageEnglish-
dc.publisherHINDAWI PUBLISHING CORP-
dc.titlePyroshock Prediction of Ridge-Cut Explosive Bolts Using Hydrocodes-
dc.typeArticle-
dc.identifier.wosid000385133700001-
dc.identifier.scopusid2-s2.0-84990925137-
dc.type.rimsART-
dc.citation.publicationnameSHOCK AND VIBRATION-
dc.identifier.doi10.1155/2016/1218767-
dc.contributor.localauthorLee, Jung-Ryul-
dc.contributor.localauthorHan, Jae-Hung-
dc.contributor.nonIdAuthorJang, Jae-Kyeong-
dc.contributor.nonIdAuthorKim, Dong-Jin-
dc.contributor.nonIdAuthorLee, YeungJo-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusRESPONSE SPECTRA-
dc.subject.keywordPlusSHAPED CHARGE-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusIMPACT-
dc.subject.keywordPlusLASER-
dc.subject.keywordPlusSHOCK-
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0