Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-ion Batteries

Cited 305 time in webofscience Cited 0 time in scopus
  • Hit : 431
  • Download : 0
Engineering electrode nanostructures is critical in developing high-capacity, fast rate-response, and safe Li-ion batteries. This study demonstrates the synthesis of orthorhombic Nb2O5@Nb4C3Tx (or @Nb2CTx) hierarchical composites via a one-step oxidation-in flowing CO2 at 850 degrees C-of 2D Nb4C3Tx (or Nb2CTx) MXene. The composites possess a layered architecture with orthorhombic Nb2O5 nanoparticles decorated uniformly on the surface of the MXene flakes and interconnected by disordered carbon. The composites have a capacity of 208 mAh g(-1) at a rate of 50 mA g(-1) (0.25 C) in 1-3 V versus Li+/Li, and retain 94% of the specific capacity with 100% Coulombic efficiency after 400 cycles. The good electrochemical performances could be attributed to three synergistic effects: (1) the high conductivity of the interior, unoxidized Nb4C3Tx layers, (2) the fast rate response and high capacity of the external Nb2O5 nanoparticles, and (3) the electron "bridge" effects of the disordered carbon. This oxidation method was successfully extended to Ti3C2Tx and Nb2CTx MXenes to prepare corresponding composites with similar hierarchical structures. Since this is an early report on producing this structure, there is much room to push the boundaries further and achieve better electrochemical performance
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2016-06
Language
English
Article Type
Article
Keywords

RECHARGEABLE LITHIUM BATTERIES; ELECTROCHEMICAL ENERGY-STORAGE; HIGH VOLUMETRIC CAPACITANCE; ANODE MATERIAL; INTERCALATION PSEUDOCAPACITANCE; 2-DIMENSIONAL MATERIALS; NB2O5 MICROSPHERES; CARBON; MXENE; NANOCOMPOSITES

Citation

ADVANCED FUNCTIONAL MATERIALS, v.26, no.23, pp.4143 - 4151

ISSN
1616-301X
DOI
10.1002/adfm.201600682
URI
http://hdl.handle.net/10203/212489
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 305 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0