Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy

Cited 57 time in webofscience Cited 0 time in scopus
  • Hit : 764
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorCheong, Jun Youngko
dc.contributor.authorChang, Joon Hako
dc.contributor.authorSeo, Hyeon Kookko
dc.contributor.authorYuk, Jong Minko
dc.contributor.authorShin, Jae Wonko
dc.contributor.authorLee, Jeong Yongko
dc.contributor.authorKim, Il-Dooko
dc.date.accessioned2016-07-25T09:35:50Z-
dc.date.available2016-07-25T09:35:50Z-
dc.date.created2016-06-16-
dc.date.created2016-06-16-
dc.date.issued2016-07-
dc.identifier.citationNANO ENERGY, v.25, pp.154 - 160-
dc.identifier.issn2211-2855-
dc.identifier.urihttp://hdl.handle.net/10203/212106-
dc.description.abstractFormation of stable solid electrolyte interphase (SEI) layer is critical to outstanding performance of energy storage devices, because it acts as a passive layer that allows facile transport of ions but forbids electron transport between the electrolyte and electrode. Although much study has been devoted to investigate the morphology and structure of SEI layer using a myriad of analytical devices on past decades, the direct observation of SEI layer on a real time scale has remained as a formidable challenge. In addition, it has been difficult to observe both the decomposition of electrolytes and formation process of stable SEI layer at nanometer scale. Here we utilize in situ transmission electron microscopy (TEM) using graphene liquid cell (GLC) to realize the observation of stable SEI layer formation in a sequential time scale. Upon e(-) beam irradiation, Li salts in the electrolytes react with reduced electrolytes and form gel like agglomerates, which are deposited on the surface of the active material as a passivation layer and later stabilized to become more uniform in overall thickness. Additionally, growth dynamics of stable SEI layer were suggested, where the deposition of decomposed electrolytes eventually result in relatively uniform SEI layer. This paper demonstrates that it is possible to observe not only the formation of non-crystalline SEI layer but also the movement of decomposed electrolytes onto the surface of active materials which account for broader understanding of SEI layer, and has the potential to detect important interfacial phenomena in electrochemical devices that were overlooked so far. (C) 2016 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.subjectLITHIUM-ION BATTERIES-
dc.subjectIN-SITU TEM-
dc.subjectELECTROCHEMICAL LITHIATION-
dc.subjectFLUOROETHYLENE CARBONATE-
dc.subjectLI-
dc.subjectPERFORMANCE-
dc.subjectSTABILITY-
dc.subjectGRAPHITE-
dc.subjectNANOWIRE-
dc.subjectANODES-
dc.titleGrowth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy-
dc.typeArticle-
dc.identifier.wosid000378020200018-
dc.identifier.scopusid2-s2.0-84964932831-
dc.type.rimsART-
dc.citation.volume25-
dc.citation.beginningpage154-
dc.citation.endingpage160-
dc.citation.publicationnameNANO ENERGY-
dc.identifier.doi10.1016/j.nanoen.2016.04.040-
dc.contributor.localauthorYuk, Jong Min-
dc.contributor.localauthorLee, Jeong Yong-
dc.contributor.localauthorKim, Il-Doo-
dc.contributor.nonIdAuthorShin, Jae Won-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSnO2-
dc.subject.keywordAuthorIn Situ TEM-
dc.subject.keywordAuthorGraphene-
dc.subject.keywordAuthorliquid cell-
dc.subject.keywordAuthorSEI layer-
dc.subject.keywordAuthorNanotube-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusIN-SITU TEM-
dc.subject.keywordPlusELECTROCHEMICAL LITHIATION-
dc.subject.keywordPlusFLUOROETHYLENE CARBONATE-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordPlusNANOWIRE-
dc.subject.keywordPlusANODES-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 57 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0