Synthesis, characterization and evaluation of porous polybenzimidazole materials for CO2 adsorption at high pressures

Cited 14 time in webofscience Cited 18 time in scopus
  • Hit : 372
  • Download : 0
Porous polybenzimidazole polymers have been under investigation for high and low pressure CO2 adsorption due to the well-built stability under high pressure and at various temperatures. Pressure swing and temperature swing processes like integrated gasification combined cycle require materials which can operate efficiently at high pressure and high temperature and can remove CO2. In this manuscript we report synthesis, characterization and evaluation of two polybenzimidazole materials (PBI-1 and PBI-2), which were prepared with two different solvents and different cross-linking agents by condensation techniques. Low and high pressure CO2 sorption characteristic of both the materials were evaluated at 273 and 298 K. Thermal gravimetric analysis showed high temperature stability up to 500 degrees C for the studied materials. PBI-1 has shown very good performance by adsorbing 3 times more (1.8025 mmolg(-1) of CO2) than PBI-2 at 0 degrees C and at low pressures. Despite low surface area results obtained via BET techniques, at 50 bars PBI-1 adsorbed up to 6.08 mmolg(-1) of CO2. Studied materials have shown flexible behavior under applied pressure that leads to so-called "gate-opening'' adsorption behavior and it makes these materials promising adsorbents of CO2 at high pressures and it is discussed in the manuscript in detail.
Publisher
SPRINGER
Issue Date
2016-02
Language
English
Article Type
Article
Keywords

BENZIMIDAZOLE-LINKED POLYMERS; CARBON-DIOXIDE CAPTURE; COVALENT-ORGANIC POLYMERS; HOLLOW-FIBER MEMBRANES; NATURAL-GAS; FUEL-CELLS; POLY(BENZIMIDAZOLE) NETWORKS; CONDUCTING MEMBRANES; COAL-GASIFICATION; PROTON-EXCHANGE

Citation

ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, v.22, no.2, pp.247 - 260

ISSN
0929-5607
DOI
10.1007/s10450-016-9762-4
URI
http://hdl.handle.net/10203/208173
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0